
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Determining Body-Orientation from Sensors
in Mobile Devices

Philip Daubmeier

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Determining Body-Orientation from Sensors in Mobile
Devices

Gewinnung von Daten zur Körperorientierung aus
Sensoren in Mobilgeräten

Author: Philip Daubmeier
Supervisor: Prof. Dr. Johann Schlichter
Advisor: Dr. Georg Groh
Date: July 16, 2012

I assure the single handed composition of this master’s thesis only supported by declared
resources.

München, July 16, 2012 Philip Daubmeier

The hardest thing is to go to sleep at night, when there are so many urgent
things needing to be done. A huge gap exists between what we know is possi-
ble with today’s machines and what we have so far been able to finish.

— Donald Knuth, author of “The Art of Computer Programming”

Acknowledgements

Tina, thank you so much for your patience with me during all the time and for constantly
motivating me. Thank you, I love you!

Thanks a lot to my fellow students and my parents for proofreading the work and giving
me helpful suggestions for improving the composition.

Thanks to all volunteers for their participation in the experiment to collect training data.
Also, I want to thank all interviewees of the survey, discussed in section 6.1, for taking the
time to answer all the questions.

Niklas and René, thanks for your readiness to help me with the Kinect SDK and its restric-
tions.

Alex, thank you. I know we didn’t meet very often, but you helped me more than you
might think. Your diploma thesis was a great assistance and inspiration for me.

Georg, special thanks to you as my valued advisor and mentor in many ways. Thank you
for your support, all the ideas and particularly for the inspirational discussions we had.
You gave me the chance to actively develop the topic of this thesis together with you and
the freedom of making the work turn into what it is now. Having started a few months
back, several restrictions and problems occured over and over, some of which I could and
some of which I couldn’t influence or work around. In the end, however, with steady
effort in improving the method with your help, some of the results were even better than
we expected.

Most importantly, I want to thank my supervisor Professor Schlichter, for giving me the
opportuniy to realize this work. With the need to apply knowledge from all sorts of areas
inside the domain of computer science, some of which I had to study especially for this
work, I could not think of a more exciting and challenging subject for my master’s the-
sis. I personally learned a lot during this time and hope that I could —to some degree—
contribute to this area of research.

vii

Abstract

This thesis presents a method to extract body geometry information of a person by solely
using sensor data of a mobile phone, carried in the user’s trouser pocket. This is achieved
by utilising a fitted regression model and adequate preprocessing, exploiting domain knowl-
edge about the sensors’ properties and constraints of human anatomy. The model is con-
structed from a training data set of simultaneously measured inertial sensor values and
skeleton data, which is in turn gained from a depth-sensing camera. It is examined, if the
presented method can sufficiently model the underlying relation in order to be able to re-
construct important parts of the body geometry from phone sensor readings alone. Finally,
the precision of those predictions is shown in an empirical analysis, before discussing the
opportunities which arise from this work.

ix

x

Contents

Acknowledgements vii

Abstract ix

Introduction 1

1. Concept 3
1.1. Social Networks . 3

1.1.1. Social Networking Platforms . 3
1.1.2. Mobile Social Networking . 4
1.1.3. Smartphones as Social Sensors . 4
1.1.4. Inference on Social Situations . 5

1.2. Motion capturing . 6
1.3. Approach of this work . 8

1.3.1. Goals . 9
1.3.2. Assumptions . 10
1.3.3. Further considerations . 10

2. Mobile Device Sensors 13
2.1. Accelerometer . 13
2.2. Magnetometer . 15
2.3. Gyroscope . 16
2.4. Sensor fusion . 18

3. Supervision Sensor 21
3.1. Depth imaging . 22
3.2. Depth sensing constraints . 23
3.3. Frameworks . 24

4. Machine Learning 27
4.1. Algorithm selection . 28
4.2. Linear regression . 28

4.2.1. Hypothesis space . 29
4.2.2. Errors and Loss . 30
4.2.3. Model fitting . 30

5. Preprocessing and Reconstruction 33
5.1. Multiplexing . 33

5.1.1. Delay correction . 34

xi

Contents

5.1.2. Frequency harmonisation . 36
5.1.3. Packaging . 39

5.2. Heading calculation . 40
5.2.1. Characteristic vectors . 41
5.2.2. Reduction to single angle . 42
5.2.3. Further refinement . 44
5.2.4. Discussion and analysis . 45

5.3. Regression feature extraction . 47
5.3.1. Elementary features . 47
5.3.2. Statistical features . 48
5.3.3. Periodicity features . 49

5.4. Response feature extraction . 50
5.4.1. Revolute joint model . 51
5.4.2. Relevant features . 52
5.4.3. Skeleton estimation from features . 54

6. Wearing position 57
6.1. Wearing preferences . 57
6.2. Classification . 58

6.2.1. Camera luminance . 59
6.2.2. Acoustic patterns . 60
6.2.3. Attitude heuristics . 61

6.3. Model selection . 63

7. Evaluation 65
7.1. Implementation . 65
7.2. Model analysis . 66

7.2.1. Residual metrics . 66
7.2.2. Residual analysis . 68
7.2.3. Feature selection . 70
7.2.4. Final models . 72
7.2.5. Cross-validation . 73

7.3. Results . 73
7.3.1. Prediction precision . 73
7.3.2. Probability density of δθ . 75
7.3.3. Generalisation . 76

Conclusion 76

Appendix 81

Bibliography 85

xii

Acronyms

CMOS Complementary Metal Oxide Semiconductor

DFT Discrete Fourier Transformation

DoF Degrees of Freedom

FFT Fast Fourier Transformation

ID Identifier

IMU Inertial Measurement Unit

IR Infra-Red (light spectrum)

Lerp Linear interpolation

MEMS Micro-Electro-Mechanical System

MSN Mobile Social Networking

NED North-East-Down (coordinate system)

NFC Near Field Communication

NUI Natural User Interface

RGB Red-Green-Blue (colour space)

RSS Residual Sum of Squares

SDK Software Development Kit

Slerp Spherical Linear Interpolation

SN Social Networking

Squad Spherical cubic interpolation

TCP Transmission Control Protocol

ToF Time of Flight

xiii

Contents

USB Universal Serial Bus

WiFi Wireless network

xiv

Contents

Introduction

In the scale of history of mankind, computers are one of the most recent inventions. Yet,
they have undergone a rapid development, from large room-filling calculators to highly
integrated micro devices in the more recent past.

With the advent of the internet, people started to use them for communication and so-
cial interaction. Web-based social networking platforms emerged, which enabled users
to connect by explicitly establishing friendship relations to each other. The machines be-
came part of the social life. Moreover, structures of social interaction were mapped in
a machine-processable form by people themselves, which in turn enabled new types of
services.

Efforts were made to generate such structures automatically. Those attempts are slowly
maturing, being supported by the fact that mobile devices are getting more and more
powerful as well as being equipped with a broad range of sensors. However, social signals,
which convey essential information about the social relationship, are complex and yet sub-
tle. They are the sum of non-verbal behavioural cues like gesture, posture, interpersonal
distance, vocal behaviour and the like [VSP09]. Humans are perfectly able to either sub-
consciously or deliberately perceive those cues and interpret them, while machines still
struggle with such tasks.

While such social signals comprise details about the kind of relationship, it is essential to
know between whom those relations exist in the first place. Therefore, the task is to ob-
serve which social interactions take place between people. The research field of Reality
Mining takes the approach of collecting little digital bread-crumbs, which are left by peo-
ple’s everyday activities, over longer periods of time [Pen09]. One key information that
can be gained this way is a trace of locations of different persons, that can be used to draw
conclusions about where and when people met. Wearable and location-aware devices, like
smartphones with their sensors, were utilised for the collection of these data. This is a very
unobtrusive way, as people carry such devices anyhow.

Still, these methods often suffer from not being fine-grained enough on small scales. To
obtain details about the nature of various social situations, more precise interaction ge-
ometry is needed. Sensors of mobile devices provide more information about the users
body geometry than their raw data gives reason to expect. It can be extracted by exploit-
ing domain knowledge about human anatomy, wearing preferences and typical patterns
of activity.

In this thesis, a method is presented, that makes use of these facts to compute certain body
geometry features. A supervised machine learning approach is used to train a mapping
from smartphone sensor data to the body posture, as seen from a supervising motion cap-
turing sensor. To make the method reliable, various preprocessing steps are applied to
the sensor data. In doing so, again domain knowledge is getting embedded into the sys-
tem.

Therefore, central goals of this work are the identification of patterns that a preprocessing
can capitalise on, as well as the selection of a suitable machine learning algorithm. Fur-

1

Contents

thermore, an answer to the question, which body geometry features can be deduced with
sufficient quality, should be found.

The discussion of related work in both the realms of social signal processing and motion
capturing establishes the basis for subsequent chapters. Next, all used sensors of both
the mobile device and the training supervisor are presented. After this, the selection of
the machine learning method is discussed. Within that context, the advantages of special
preparation of the raw values is elaborated. The various steps of this preprocessing are
then derived on the basis of experiments in the following. The results are evaluated, be-
fore concluding with a recapitulation of the method and a discussion of the prospects and
opportunities, which arise from this work.

2

1. Concept

Before presenting the approach that was taken in this thesis, an overview over related
research topics will be given in the following. First and foremost, social situations are
examined with emphasis on social networks and social signal processing, to lay out the
foundation upon which the work is built. It will be investigated which parameters of
body geometry are especially of interest and promise to be able to be inferred from sensor
values. Previous methods are enumerated, which use the same kind of sensors to reason
about body geometry and types of activity. A proposed new approach is concluded from
the weaknesses that accompany those prior methods. Associated sensors and mechanisms
for detecting body orientation are put in the context of related techniques, before going into
great detail in the next chapters.

1.1. Social Networks

This work is mainly motivated by a growing research interest in bringing social networks
and social interactions into a computer science context. Social networks, in their original
meaning, are graph structures that model individuals and dyadic connections between
them. Dyads are mid- or long-term relationships between actors in such a network, and
can incorporate additional details about the type or strength of the connection [MG11].
Social networks and their analysis is therefore an interdisciplinary field of sociology, social
psychology and graph theory.

1.1.1. Social Networking Platforms

Web-based Social Networking Platforms emerged from online communities, enriching them
with the addition of a mapping to just such a social network graph. Users of these services
are establishing relationships to user profiles of people they know. Depending on the
platform, they can even specify the type or weight of their relation, e.g. ‘acquaintance’,
‘close friend’, ‘family member’, etc. This way, the users are explicitly creating a social
network graph inside the system of the service provider. Growing public interest in those
platforms and their related research topic mutually drive each other. While the former
allows for analysis of social networks in a new scale, scientific findings of the latter are
flowing back into the development of platforms.

Real-world social networks are much more dynamic, however. For instance, after leaving
school or changing the employer, friends or colleagues are no longer met everyday, which
causes these dyads to become weaker until possibly completely losing touch to some. With

3

1. Concept

couples breaking up or falling out with former friends, dyads may stay but get negative
connotations. Other examples of these dynamics could be friends in sports, for which the
relationship and frequency of encountering may vary seasonally.

All those changes over time and many others are not nearly mirrored in social networking
platforms on the web yet. As investigations and surveys of these showed [NBW06, GD10],
users are adding new relations on average around three to four times more often than
deleting dyads. This may be caused by the majority of users conceiving and using these
websites as platforms for staying in contact with former acquaintances. Even with the
possibility given to categorize relations, it is questionable whether users would actually
explicitly update their profile to keep it consistent with their current real-world social
networks. And if they did, those manually updated graphs are likely to be biased and
error-prone. This is not surprising, given the nature of humans, who are not perceiving
the world from a point of view as neutral as machines are doing.

1.1.2. Mobile Social Networking

Mobile Social Networking (MSN) platforms promise to resolve these shortcomings. With
computers getting ubiquitous, mobile and even wearable, they are getting more and more
involved into real-life environments. Smartphones accompany users in their daily routines
and are able to sense their environment. Each device iteration is getting equipped with
more accurate and more diverse sensors. Besides higher computational power and a dif-
ferent user interface that is centred around a larger touch display, the sensors are one
of the key factors that distinguishes smartphones from so called feature phones. In west-
ern Europe, sales of smartphones already surpassed those of all other cell phones types
[IDC11].

Together with the smartphone trend, mobile applications of services with a social network-
ing context became more and more popular in the recent past. As of April 20, 2012, the
currently largest network Facebook reached a total of over 900 million users, with over 500
million accessing the platform via their mobile devices at least once a month [Fac12]. Us-
ing a conventional social network service via a mobile user interface does not make a true
MSN, however. To exploit their full potential, mobile phones can be used as Social Sensors.
Based on the automatically gained information, new services could be built which enhance
the functionality or make existing services more convenient for users.

1.1.3. Smartphones as Social Sensors

In the context of the research topic of Human Behaviour Understanding, Salah et al. [SL11]
showed an overview of relevant data that can be gained from smartphones which enables
them to be classified as Social Sensors. They can sense the following features:

• Location. Using various satellite navigation systems or wireless network triangula-
tion, the phone can determine its position to a certain degree.

4

1.1. Social Networks

• Other devices in physical proximity. Via Bluetooth scanning or Near Field Com-
munication (NFC), other devices in mid or near distance can be recognised.

• Movement patterns. Inertial sensors allow to draw conclusions about physical ac-
tivities.

• Communication. The mobile phone knows with whom the user calls or texts, when
this happens and how long such dialogues take. In theory, even contents could be
analysed in addition to this.

• Device status and interaction. This includes for example network coverage, whether
or not the device is charging or how the phone is used (games are played, user is
surfing, etc.).

• Peripheral devices. The sensing capabilities of the device can be extended further
by connecting to peripherals, e.g. watches with heart rate sensors or many others.

All those data can be used to examine the users behaviour and activities on comparatively
short time and spacial scales. These observations can in turn be used to reason about
social interactions of the person as well. Previous work in the domain of Reality Mining fo-
cused on collecting a multitude of raw data of those aforementioned classes and analysing
them with Data Mining methods. While with this broad generic approach a lot of insights
could be gained already, it does not make use of domain knowledge in the collection pro-
cess.

1.1.4. Inference on Social Situations

Other preceding researches cover the location feature, which plays a major role in the
multitude of possible behavioural cues. One of the key indicators for a social interaction
taking place showed to be the knowledge about the positions of several persons at a point
in time, which is also a result of reality mining and is further explored in [Leh09].

On a large scale it may be sufficient to know only about the location of the present actors.
To examine smaller scales in both time and space, however, other features play a more
important role. To estimate with whom a person interacts, a key factor is to know where
both participants are looking at. This angle with which both are oriented to each other
together with the knowledge about their distance, can be exploited to reason about the
presence of an interaction and to some degree also about their type of relationship. These
tuples of relative orientation and distance are explored in more detail in [GLR+10].

Another topic is the inference of types of activity from smartphone sensed data. The clas-
sification of activities enables to make more detailed assumptions about the likelihood of
the social situations taking place. Activities are therefore another key to decide whether a
social situation takes place and determine the precise parameters of the interaction. This is
especially true in combination with the aforementioned method. Two interacting persons’
relative orientation is different, if they are standing face-to-face to each other or jogging
side-by-side, for example.

5

1. Concept

The aforementioned topics could also be grouped into two main aspects, which will be fur-
ther detailed in the following, as they are especially related to the topic of this work:

• Motion capturing. The measurement of relative orientation of persons falls into the
larger topic of motion capturing, as it involves reasoning about the geometry of the
actors bodies. This can be as coarse-grained as only tracking this very orientation
angle or as fine-grained as tracking all movable body parts or even facial expressions.

• Activity classification. This topic has gained a lot of contributions lately, as sensors
are getting smaller and more affordable. It has not only applications in the realm of
social signal processing, but in many other different contexts.

There is a multitude of related work on the topic of activity classification by inertial sen-
sors. This includes applications in medicine [SCCD], sports [ABMp+] and life-logging
[KL07, RDML]. Sensors are also used to determine modes of transport, such as walking,
running, cycling or driving a car [NSY, BI04]. However, with these approaches, the activ-
ities are classified into predefined states, leaving no room for activities which do not fit in
any of these. The problem that is inherent to classifying in general is also that there is no
statement about those states which lie in between them or about transitions.

A continuous mapping can be, depending on the specific application, more expressive.
Such observations are made by motion capturing, which will be regarded in the follow-
ing.

1.2. Motion capturing

Motion capturing comprises a large field of different techniques and areas of application.
An overview over current methods is given in [WF02]. For this work, it will be concen-
trated on tracking of human body geometry, which is only one of the branches in this
area. There are very different approaches, which target on the reconstruction of continu-
ous features of body geometry, the complete skeleton or a surface mesh of a given body.
These methods are typically applied in real-time, i.e. not on static subjects but focusing on
motion, as the name already implies.

A short overview over the existing approaches can be given with the following categori-
sation:

• Optical:

– Single camera and computer vision, e.g. body mesh fitting

– Multiple cameras for three-dimensional information, e.g. stereoscopic image
recognition

– Marker-supported camera systems

– Depth sensing devices like time-of-flight cameras or structural pattern scanners

• Inertial sensor based, measuring forces or orientation of body parts they are attached
to.

6

1.2. Motion capturing

This list is by far not exhaustive and just illustrates a selection of very different techniques
that exist for gathering body geometry data. It can be seen, however, that the systems
can be grouped in two basic categories: ones that are measured from the outside, such as
camera systems and some which are sensing from the inside, such as inertial sensors.

Many traditional motion capturing techniques are based on markers, which are attached
to the persons to track. These markers are either actively sending out signals or light or are
illuminated and reflecting the light again. The scene is then viewed from several angles
simultaneously, allowing for calculating back the position by regarding their projections to
all cameras, of which the position is known. This or similar techniques require a complex
system, that has to be configured or calibrated and is therefore constrained to the static
location of this system. The accuracy on the other hand is unbeaten by any of the other
methods mentioned in this work. The main problem with these approaches is, however,
that for tracking persons and observing social situations, this is not a very natural environ-
ment.

Approaches that are much less obtrusive, as they do not require any body-worn markers
and only require a regular video camera are computer vision methods. Here, the body
geometry is tried to be recognised from a given image, or sequence of images. This tries
to emulate what the human brain does as well when looking at another person: it can
comprehend in which state and pose his body is by just the eyes’ image. Advanced tech-
niques try, for example, to fit a body mesh onto a recognised person, which can addition-
ally be supported by constraining the model with help of inverse kinematics, as presented
in [PLGR12]. These class of methods typically work in any environment as long as enough
light is available, but yield results of comparatively less accuracy.

Depth sensing devices provide a compromise between traditional and solely image based
tracking methods. The reason for this is, that with 3-dimensional images containing depth
information, the persons can be detected much easier and therefore the body be tracked.
The tracking accuracy is generally expected to be higher than with ‘flat’ image recognition,
though still only a single observing device is needed. Some depth sensing devices may
have problem with outdoor environments, however. Sensors of this type will be discussed
in detail later in this work.

An also noteworthy approach was taken by Schwarz et al., by combining the motion cap-
turing principle with making use of inertial sensors. They presented a method to estimate
poses in [SMN11], where six body-worn orientation sensors are used for tracking persons.
While continuously checking for the most probable activity, the pose is estimated via a
mapping of the selected activity-specific model. The activity can be one of several prede-
fined discrete states in this method. In some parts this is even superior to complex camera
and marker installations for motion capturing: occlusions are negligible as each sensor can
measure independently from any line of sight. Also, the tracking works everywhere as it
does not have to rely on any measurements from the outside. However, it is yet limited
to certain trained pose classes and the user still has to wear several sensors all over his
body.

7

1. Concept

Body-mounted
equipment Mobile phones

No body-mounted
devices

Special room
or several

observing devices

Observing devices
(e.g. camera)

No observing devices

Li
m

it
ed

 to
 in

do
or

 e
nv

ir
on

m
en

ts
In

do
or

s
an

d
ou

td
oo

rs

(Accuracy)

(Convenience)

Marker-based
motion

capturing

Hybrid image
recognition
and sensors

Training data
collection

Several inertial
sensors on body

body geometry
from phone

Depth sensing
devices

Multi-camera
3D scene

recognition

Body-mesh
fitting on image

Figure 1.1.: Classification of different motion capturing techniques and the overall effect
of either maximising accuracy or convenience. The approach of this work is
depicted in the green circles.

1.3. Approach of this work

All of the previously mentioned related techniques for determining body geometry have
the disadvantage of needing either to observe situations from the outside or requiring the
user to have several devices mounted to his body. For a more unobtrusive approach, the
idea of using the smartphone as a social sensor, as mentioned above, will be picked up
again.

The method presented in this work is outlined as follows: inertial sensor measurements
of the mobile device, which is carried by a person, are taken as a basis for determining
certain features of the user’s body. To enable this, a machine learning algorithm is trained
to transform those given sensor measurements to the target body features. It is trained by
using values from a full-skeleton motion capturing technique as examples. The skeleton
tracking is done by a depth sensing device and an appropriate software component. Once
trained, the mobile phone can ideally act like a motion capturing device itself, tracking
several key geometry features of the user’s body while being carried.

Figure 1.1 clarifies the goal once more by arranging several motion capturing methods in
several dimensions. The different methods can be compared in the vertical axis in terms of
complexity of their systems, with some needing many observing cameras, others requiring

8

1.3. Approach of this work

none at all. Also, some are limited in their environment in which they can be applied.

The horizontal axis describes the devices which have to be worn on the body. A compro-
mise can be found in the middle, where a smartphone has to be worn, which is not as
obtrusive however, as it is carried anyhow by many persons. Previously discussed ap-
proaches are shown in this comparison, as well as the one presented in this thesis, which
is splitted into the trained and the training phase. When being trained, both the mobile
phone and the depth scanning device have to run their measurements synchronously to
generate a training data set of sample pairs.

1.3.1. Goals

Figure 1.1 also shows a general rough trend of convenience for the user and accuracy
of tracking results being rather contradictory. The body posture information yielded by
the smartphone will not be able to compete with motion capturing techniques that in-
volve cameras or even markers, as they have insights about the whole body. Nonetheless,
it shall be answered in this thesis, which body features can be determined reliably with
smartphone sensors alone and how accurately they can be tracked.

Another goal of this work is to examine if the outlined method is suitable to infer the rela-
tive orientation of two persons to each other, as already mentioned was a key component
in [GLR+10] to conclude about social situations. This, in turn, can be inferred if two peo-
ples headings in a common reference system are known. These headings can be described
by two vectors. If both persons are situated on the same elevation, those vectors lie in
the same plane, parallel to the ground. The system can then be simplified by reducing
them both to angles relative to a virtually infinitely far reference point, e.g. the magnetic
north pole. Such angles in a common local reference coordinate system will be examined
in this work. The use of combining sensor data with real body geometry allows for a new
point of view onto the data, as the persons heading can be very different from the devices
heading.

The motivation for this work is also, that even though several possible error sources are in-
troduced when transforming sensor data into body geometry, the output could be enriched
with new information. This is potentially achievable, because even though no additional
information is introduced directly, the transformation can be supported by implicit knowl-
edge about human motion and limitations of the skeleton and its joints as well as typical
patterns of movement of humans. Whether or not this domain knowledge can be used to
receive more expressive data through this transformation shall be shown in this work as
well.

If such a method proves to be reliable, it can be applied to many more areas as well
rather than only for social situation explorations. In medical applications, for example,
the method could be used for monitoring purposes. Related work in this area shows that
there were already similar approaches taken, such as the monitoring of movement disor-
ders by observing body positions with inertial sensors [KJvdK98] or by raising alarm if
elder people have accidents [ZA07], which is also determined by worn sensors. It could
also be applied in areas like life-logging or as an enrichment for reality mining.

9

1. Concept

1.3.2. Assumptions

A study of the mobile phone location in public spaces has shown that the majority of
male phone owners carry their devices within their trouser pockets [ICG05]. The study
also showed, that most women carry their phones in their handbags. Unfortunately, it
is very hard to infer anything about the persons body posture from the devices sensors,
if it is lying inside a bag as the attitude of the device is varying each time it gets taken
out of and being put back into the handbag. Perhaps, the forces that can be measured
from the phone could be used to distinguish between different modes of movement, such
as walking, running or standing. However, a more fine-grained differentiation between
body postures with a low level of energy is hard to make. Even more so, telling apart if the
handbag is carried by a person standing still or not being carried at all could be difficult
as well. These assumptions are not further verified in this thesis, as the trouser pocket was
chosen to define a scope for this work.

As another indicator for this being a good choice, it was shown that for different positions
of inertial sensors on the body, the trouser pocket proved to be very suitable for deter-
mining different activities, compared to other locations such as the wrist or on a necklace
[MSSD06].

However, even with the restriction of only addressing mobile devices that are carried in
the pocket, many variables are still to be determined by the algorithm, such as the exact
pocket (left or right, back or front) and the orientation of the device inside it. This will be
discussed in chapter 6.1 in detail.

1.3.3. Further considerations

There are two different modes, such a learning algorithm can be trained: individually
for each person that is using the application (I) or with a broad range of training sets
from different people that are aggregated and used together as the training data (II). While
the second method is more convenient, individual training could yield more accurate re-
sults. Each person has different body metrics and slightly different patterns of their typical
movement. These metrics and patterns could then be used to further restrict the learning
algorithm. This in turn could allow for building a more exact model of valid body postures,
that can be produced by the algorithm. Furthermore, user-specific facts can be included in
such a model, like the preferred pocket, the mobile device is located.

This is especially useful, as a person’s pocket location typically does not vary over a long
period of time, as detailed later in this work and confirmed by earlier results in [ICG05].
However, even with all those advantages, the process of training the persons peculiarities
to the algorithm can be inconvenient to the user himself. He has to have access to a depth
scanning device, configure the device with a computer and the special software, while at
the same time connect his mobile device to the same PC and software. Having set up the
training environment, he ideally has to perform all typical motions that should be detected
by the learning algorithm. This process is time consuming and error-prone, if not done in
right way. In the worst case, an incorrect or insufficient training data set is produced, that

10

1.3. Approach of this work

produces poorer results than having used a generic, user-independent data set in the first
place.

These consideration have led to taking the approach of building up a training set from
sufficiently many different persons to form a generic data set. It should be mentioned, that
even though this approach was taken, the basic concept presented in this work can be ap-
plied together with an individual learning phase just as well. The impacts of this decision
will be further discussed on the basis of actual test results in the evaluation chapter at the
end of this thesis.

11

1. Concept

12

2. Mobile Device Sensors

As the general concept has been outlined, first the sensors of the mobile device will be
presented in detail, as these will be used in both the training phase as well as in a trained
state to infer about the actual body features. To achieve a high success rate with the ma-
chine learning algorithm, it is fundamental to feed it with as much data from the sensors
as required and at the same time trying to only provide information, that is relevant for
extracting the target values out of it. If some data is omitted, it could be the case that the
algorithm does not work with the accuracy that it could, because it could be the missing
piece that is needed to improve the desired accuracy. The opposite case, i.e. too much
data, could as well have negative causes: The computational power that is needed in-
creases, without being able to gather additional information. It also adds to the risk of
getting into a state where too much irrelevant data is used, thus resulting in an overfitting
of the model, as explained later.

Therefore, it is essential to take a closer look at the properties of the sensors, available in the
device. This enables to determine what exactly they can measure and, equally important,
what they can not. Furthermore, each of the three presented sensor types can be imple-
mented differently in hardware. This means there are different accuracies and operating
ranges. Before discussing which exact parameters of the sensors are taken into account for
this work and in which exact form, all sensors and their functionalities are described in the
following. For each type of sensor, the most common implementation for mobile devices
and their corresponding tolerances and operating ranges are given.

2.1. Accelerometer

An accelerometer is a sensor device, capable of measuring ac-
celerations and therefore forces that affect the device. In to-
day’s smartphones, accelerometers are realised as micro-electro-
mechanical systems (MEMS), measuring forces in all 3 axes. A 3D
Vector can be deduced from those three single measurement val-
ues, that represents the direction and strength of the force that
is applied to the device. With the device lying still, the vector

describes the gravitational force, as it is the only acceleration that is present. It has a mag-
nitude of about 1g and is pointing to the centre of the earth, which is the downwards
direction in the local north-east-down (NED) coordinate system. As this way the down di-
rection is known, it directly allows to infer the 2 degrees of freedom (DoF) orientation of
the device relative to the ground plane.

13

2. Mobile Device Sensors

16
00

µm

110
µm

spring

proof mass

Z
X
Y

capacitor plates

Figure 2.1.: Scanning electron microscope (SEM) pictures of the LIS331DLH accelerome-
ter of STMicroelectronics, with 3 degrees of freedom (Original images from
[DW10])

In case the phone is being moved or shook, the device is subject to not only gravity, but
also forces that are the cause of these rotational and linear motions. The acceleration,
measured by this sensor is therefore a composition of different types of forces. In such
a case, the gravitational component and therefore the orientation of the phone can only
be estimated, based on previous measurements. This is typically done by applying a low-
pass filter on the sensor output signal, which drops all high-frequency influences, like short
movements and shaking of the device. This holds a critical disadvantage, however, as the
responsiveness of the measured orientation is getting worse. The signal lags behind quick
rotation motions of the device, as the filter cancels them out like they were disruptions.
The signal will asymptotically approximate the right value eventually, but it takes longer
than it would have without the filter. The combination with a gyroscope will solve this
issue, as detailed at the end of this chapter.

The structure of a MEMS accelerometer is typically planar, with loose structures that are
held with springs and equipped with proof masses, all etched out of silicon. Attached
thereon, a multitude of capacitor plates are placed in a comb-like structure to actually mea-
sure motion of the spring-mounted mass. Figure 2.1 shows these structures. The part for
measuring the z-axis is laid out differently to account for reacting to forces perpendicular
to the chip.

Typical operating ranges of MEMS accelerometers are about ± 2.5 g, with a zero-level
offset of up to 40 mg and a sensitivity of under 20 mg [STM08], whereas newer prototypes
even allow for much higher accuracy [AAA07].

14

2.2. Magnetometer

2.2. Magnetometer

A magnetometer is integrated into more and more smartphones
today [Col11]. Such sensors are typically able to measure mag-
netic flux density in all three orthogonal spacial directions. The
main purpose of the sensor as a whole is to detect the direction
of the earth’s magnetic field lines, and therefore act like a digital
compass. The direction in form of a 3D vector can be deduced
by combining the three single flux density measurements. As the

field strength is adequately equal on most locations on earth, it can also be reasoned about
the presence of electro-magnetic culprits or the need for recalibration of the sensor due to
bias.

As of now, there are mainly Hall-effect based magnetometers in current mobile devices
[TLH11]. The effect that is exploited by this type of sensors is named after its discoverer
Edwin Hall. He described a voltage shift across an electrical conductor that is orthogonal
to both the electric current and the magnetic field that is applied [Hal79]. On a flat square
conductor, for instance, this effect can be used to detect a magnetic field that is perpendic-
ular to the plane by applying a current between two opposing edges and measuring the
voltage difference between the two other edges. The sign and amplitude of this measured
shift is then directly related to the direction and strength of the magnetic field.

The advantage of such Hall-effect based magnetometer sensors is that they can be pro-
duced in the form of a CMOS chip, which can be fabricated inexpensively in existing pro-
duction facilities. In principle, the sensors can only detect fields that are perpendicular to
the chip’s surface, like already explained. To enable the detection in all three directions,
an additional magnetic concentrator is used. This coat, made out of special ferromagnetic
material, bends the field lines to allow the detection of magnetic fields which have orig-
inally been parallel to the sensor’s planar surface. Figure 2.2 shows the layout of such a
sensor: The 8 square structures are the electrical conductors which are used for measure-
ment, some of which are covered by magnetic concentrators in a layer above (not seen in
this image).

Newer development has also lead to Lorentz force based magnetometers, which will be
integrated in smartphones in the near future [GR11]. These sensors are MEMS-based and
have higher sensitivity and less sensitive to temperature shifts [RWY+09]. The Lorentz
force, which is also responsible for the Hall-effect in electrical conductors, is exploited to
measure the magnetic field strength in these sensors.

Independent from the type of magnetometer, these sensor structures are combined into
a package, containing feedback control systems and a complete interface logic for digital
connections to the outside of the sensor device. Current sensors have a measurement range
of± 1200 µT, or depending on the sensor even up to± 8000 µT, with a resolution of 0.3-0.8
µT [Asa10, STM11].

15

2. Mobile Device Sensors

Figure 2.2.: Microscopic image of the AK8973 Hall-effect based magnetometer of Asahi
Kasei Microsystems, which is built into a 2010 released smartphone. The width
of the whole image section is about 500 µm in the real chip. (Image taken from
[DW11a])

2.3. Gyroscope

A micro-electro-mechanical gyroscope, which is built-in to more
and more mobile devices [Col11], can measure angular rates in
3 dimensions, i.e. the rotation speed around each axis. Since it
can only sense angular velocity, it only tracks relative changes of
the device’s attitude, not the absolute orientation related to a ref-
erence frame. Those values alone are not particularly valuable
in most situations. However, in combination with the aforemen-
tioned sensors, the gyroscope becomes useful to stabilize mea-

surements and get more accurate results. This will be elaborated in detail later.

The fabrication processes and structures of a MEMS gyroscope are very similar to those
of its accelerometer counterpart. However, the working principle is different and so is its
layout. The fundamental principle that is used for this type of sensor is that it acts like a
tuning fork gyroscope [Nas05]. It consists of pairs of proof masses that are loosely attached
to the surrounding silicon with springs. The capacitor plates are this time not only serving
the purpose of measuring but also for actively driving the mass to a vibration at a certain
frequency. The physical effect that is exploited, like in many types of gyroscopes, is the
Coriolis effect. When the device is rotated, the Coriolis force generates a vibration that
is orthogonal to the one that was produced actively by the sensor. The amplitude of this
orthogonal vibration can be measured by capacitive electrodes and enables to conclude
the angular rate which was applied to the device.

Figure 2.3 shows the structures of two different such gyroscopes. In the upper part of the
illustration, the sensor consists of four ‘wings’ inside the circular structure in the middle
of the silicon. The whole structure is oscillated in a rotational manner around the centre
by an array of capacitive driving plates that are located to both the left and right sides.
Each two opposing wings form a pair of masses that are bent by either a perpendicular
acceleration or by the Coriolis forces. In case of a linear acceleration, both wings are bent

16

2.3. Gyroscope

15
00

µm
350

µm
80

0
µm

roll proof masses (pair of wings)

pitch proof masses (pair of wings)

driving capacitor plates

Figure 2.3.: SEM images of the MEMS gyroscopes LYPR540AH (above) and L3G4200D (be-
low) of STMicroelectronics (Images taken from [BD10] and [DW11b])

in the same direction. If an angular rate is applied, however, the wings are moved to
opposing sides. Therefore, the difference of the two wing’s measurements is taken, which
then only contains information about the angular rate and is completely insensitive for
any linear forces.

As already mentioned, MEMS gyroscopes can not measure absolute orientation, unlike
classical mechanical gyroscopes which exploit the inertia of a spinning mass. When inte-
grating the angular rate over time, the relative change in orientation to a certain previous
point in time can be calculated. This way, however, bias errors of single measurements are
summed up to a large drift, getting worse the longer the measurement sequence takes. To
account for this drift, it has to be corrected with absolute values regularly, like explained
in the sensor fusion section shortly.

Typical measurement ranges of current MEMS gyroscopes are at angular rates of about
± 270◦/s with a sensitivity of 0.005◦/s to 0.01◦/s [STM12].

17

2. Mobile Device Sensors

2.4. Sensor fusion

In this context, the process of sensor fusion connotes the logical combination of all three
presented sensor types into one virtual sensor. At first, the accelerometer lets infer the
current attitude of the device. This, however, still leaves one rotational degree of freedom
around the up-down-axis. This final DoF can be constrained with data gathered from the
magnetometer. The final result is the device’s complete attitude, relative to the local NED
reference system.

However, the fusion of these two sensors alone yields to a very noisy signal that also has a
poor dynamic response with quick movements resulting in overshoot of the signal. Also,
as mentioned earlier, with a lot of forces applied by the user, the gravity vector can no
longer be determined exactly but rather only be estimated. Furthermore, magnetometers
typically have a poor response time to quick movements and noticeably lag behind the
correct magnetic heading.

The gyroscope, however, does not have all those weaknesses. In fact, it has a very short
response time and is much more accurate in perceiving motions, even quick ones, than
the magnetometer. As already mentioned, with integrating the angular rate values of the
gyroscope, the attitude of the device can be obtained. This attitude is only relative to the
orientation at the start of the sequence, but it is much less noisy than the one that resulted
from the accelerometer values and has an accurate dynamic response to quick movements
as well. It should be noted, that the raw gyroscope signal is noisy and biased as well. The
difference comes from the integration, where these are summed up to a drift over time
while the noise is damped significantly at the same time.

With having noisy but absolute values on the one hand and accurate but relative and drift-
afflicted values on the other hand, it seems reasonable to combine these two signals and
take the best of both worlds. There are, amongst others, basically two ways to achieve
this:

1. The first and simpler approach is to take the low-pass filtered attitude signal of the
accelerometer and compass and add it to a high-pass filtered integrated signal of
the gyroscope, like described in [Col07]. The low-pass ensures that noise is removed
from the signal and the longer-term absolute values are preserved, whereas the high-
pass removes the proportion that is subject to drift and leaves the quick and accurate
short-time responses of the gyroscope.

2. A second way is to use a Kalman filter with a suitable model of the sensor inputs and
their noises. The application of such a filter to combine inertial sensors is described
in [Leh09].

To avoid the gimbal lock problem of Euler angles, which are directly deduced from these
triaxial sensors, rotation quaternions are used as an output of sensor fusion algorithms to
express the device’s attitude.

One more information can be extracted from the combination of the inertial sensors: af-
ter having a good approximation of the attitude, it allows for the back calculation of the
gravity vector. Subtracting this from the raw accelerometer values, the linear acceleration

18

2.4. Sensor fusion

information is left over. Effectively, the combination of just the accelerometer and the gy-
roscope via sensor fusion allows for separation of gravity from all other accelerations and
therefore solves the basic problem that was present with only having the accelerometer by
itself.

There are already complete Inertial Measurement Units (IMU) in the size of a single one of
the previously mentioned sensor chips. They have all three inertial MEMS sensors and
their integrated circuitry in a single package. Even a processing unit for computing the
sensor fusion calculations is built into the chip package [Inv12]. These are, to the best
knowledge of the author, not yet integrated in devices on the market today, but will cer-
tainly be in the near future. Aside from saving space in mobile devices, which are getting
smaller and smaller, they also help saving power due to the further miniaturisation.

Some of today’s smartphone operating systems provide an implementation of such a sen-
sor fusion mechanism in the OS itself. This additional hardware abstraction layer above
the underlying sensors supersedes the need for knowing which sensors are actually avail-
able. If only an accelerometer and magnetometer is available, the orientation output will
be calculated only by filtering the acceleration values and combining them with the com-
pass readings. In case an additional gyroscope is recognised in the device, the advanced
sensor fusion method, described above, can be used. Even if a hardware integrated IMU
is present, the interface does not change, but instead the values are just passed through to
the consuming application. Moreover, developers do not have to start from scratch, han-
dling raw sensor values, but can instead focus on processing more meaningful values like
the device orientation in a common reference frame or the linear acceleration without the
gravity part.

Such a complete interface in the operating system to sensor fusion was introduced in Mi-
crosoft Windows Phone 7.1 with the Combined Motion API in April 2011 [Mic11c]. Google’s
Android features an interface for the so called Rotation Vector Sensor that used to combine
only accelerometer and magnetometer data since OS version 2.3, but was updated to incor-
porate gyroscope values with Android 4.0 as well [Goo11], which was released in October
2011. Apple iOS now also supports such functionality since the iOS 5.0 version that was
released in March 2012 [App12].

19

2. Mobile Device Sensors

20

3. Supervision Sensor

The sensors of the mobile device provide the data, which will be used to reason about
the user’s body geometry, as outlined in the concept before. To enable this, a reference of
true target values is needed to train against. For this purpose, a motion capturing sensor
system will be used to collect the corresponding body geometry in real-time together with
the mobile sensors.

In this work, a Kinect depth sensor will be utilised for this, together with an adequate
motion capturing software component. Released by Microsoft in 2010, this sensor device
was developed with the use of 3D-sensing technology of PrimeSense, a Tel Aviv based
company [Mic10]. Its original purpose was to be a gaming sensor to enable controller-
less casual games, but was recently also officially released as a natural user interface (NUI)
input device for the PC. Together with this, a slightly modified version of the Kinect was
released specially for the PC, that has a broader field of sight and a nearer depth range
covering a smaller area. For this work however, where a more distant and therefore also
larger range is more suitable, the original version was used. A picture of the device can be
seen in figure 3.1.

The Kinect sensor provides with the following integral sensors and actuators, some of
which will be described in more detail later:

• Camera: A CMOS image sensor with a Bayer-Pattern colour filter that outputs a
stream of 30 RGB images per second, i.e. the same technology like built into usual
webcams.

• Depth sensor: A structured-light 3D scanner system, consisting of an infra-red (IR)
projector, an IR image sensor and a processor. It outputs a stream of about 30 depth
frames per second.

• Audio processing: A microphone array consisting of 4 microphones and a sound
processor for noise suppression and echo cancellation. Beyond this, the array enables
the computation of virtual directed microphones via beamforming to be able to only
‘listen’ into a certain direction. This can also be used backwards to locate from which
direction a sound source came.

• Orientation sensor: An accelerometer for measuring the devices current orientation
by looking at the direction of earth’s gravity vector, similar to the one described for
the mobile device in the previous chapter.

• Tilt adjustment: A stepper motor to tilt the device up and down to a certain degree
for adjusting the vertical range of sight and help identify the ground plane.

21

3. Supervision Sensor

Figure 3.1.: The original version of the Kinect sensor device. Both the RGB and IR cameras
are located in the middle, the IR projector can be seen to the left. (Image taken
from Mircosoft press release)

3.1. Depth imaging

The important part of the sensor for this work is the depth sensing ability. For this purpose,
the IR projector sends out a specially design dot pattern of light points, which are then
reflected by the objects and persons in front of the device. Depending on how far or near
the subjects are located from the sensor, the pattern in this region is going to be more
densely or sparsely spread from the device’s point of view. The dot pattern appears to be
random, but indeed has a logical structure which allows to reconstruct the location where
it belongs to. Furthermore the pattern can be broke down into two patterns which are self-
similar, one being more sparse with brighter points and a more dense one consisting of
dots of less luminance. This allows for achieving a better depth resolution in nearer areas
of the image, whereas the bright and sparse one extends the measurable range for distant
parts.

To detect this projected and reflected pattern, an IR camera is built into the device which is
formed from a common CMOS image sensor that sits behind a filter to only let light from
the infra-red spectrum pass. A processor, integrated in the device, computes an estimated
distance for each pixel of the frame. It does so by analysing the reflected pattern. In this
process, the fact is exploited that the device knows how the pattern is structured, which is
fixed and calibrated for each device. Therefore, this computation follows the principles of
a structured-light 3D scanner.

In contrast to other techniques, such as time-of-flight (ToF) cameras, this allows to utilise
low-cost hardware components and yet get a real-time stream of depth images. ToF cam-
eras measure the distance based on the time the light needed to travel from the projector to
the object, be reflected and travel back to the sensor. The distance travelled is then simply
this measured time multiplied with the speed of light in the medium of air. To distinguish
when the light was emitted, it is sent out in periodic pulses with a sufficiently large pe-
riod. This principle enables the measuring of the distance of each pixel directly. In reality,
however, sophisticated systems with high quality components have to be built to control
the projector pulses and to read out the sensor to achieve sufficient accuracy. This causes
the system to cost multitudes more than comparable structured-light scanners.

The main disadvantage of structured-light 3D scanners, the required computation of the
depth map is compensated by the Kinect by having specialized hardware built into the

22

3.2. Depth sensing constraints

practical limits

physical limits

1.2 m

3.5 m

4 m

0.8 m

0.8 m 1.2 m 3.5 m 4 m

1.8 m

44°

27°

27°

Figure 3.2.: The operating ranges for the depth sensor of the Kinect are shown in a top and
side view. The angles to which the sensor can tilt up and down with its motor
are depicted in the side view as well.

device that handles the processing in real-time. This relieves the work from the host com-
puter as it gets the already processed depth stream as a sequence of 2D grey-scale images.
Each pixel of such an image contains a value proportional to the estimated depth and lies
in the range of 11 bit.

3.2. Depth sensing constraints

For later measurements to collect training data for this work’s method, it is important to
know what the Kinect sensor can measure and where its limits are.

First of all, due to the nature of the structured light scanner, its depth sensing ability is
restricted to certain distances. If an observed object is to near, the distance can no longer
be inferred. This is due to technical limitations such as the focusing of the camera and the
fact that the IR projector and its camera counterpart are located apart from each other. If
the distance gets to large, the dot pattern will be shrinking to a small cluster in which single
points can no longer be distinguished. Physical and practical operating ranges of the first
version of the sensor are shown in figure 3.2. The values for this illustration were taken
from the Kinect SDK documentation [Mic11b]. Note, that the PC version of the sensor has
different operating ranges, which are not of special interest for this work, however.

The digital resolution of a single pixel is linearly proportional to the distance. However,
the precision depends strongly on the distance, which has a normally distributed error
with standard deviations of 0.5cm for a 1m distance up to 2cm for an object as far as 3.5m
away [Kho11].

23

3. Supervision Sensor

input
depth
image

inferred
body
parts

inferred joint proposals
 front side top

input
depth
image

inferred
body
parts

inferred joint proposals
 front side top

Figure 3.3.: Intermediate states of skeleton joint inference. (Images taken from [SFC+])

3.3. Frameworks

From these depth images, it is possible to recognise persons and even provide motion cap-
turing functionality by fitting a skeleton into the sensed depth map of a subject. There
are several software frameworks and drivers for the Kinect sensor. Some of them are
open source projects, such as libfreenect, which were derived from reverse engineering
the USB communication. They are only providing access to the sensor’s depth stream,
however.

The OpenNI framework, in contrast, can be used together with the so called NiTE middle-
ware to compute such skeleton data. This project was mainly developed by PrimeSense for
their reference depth sensing system before the Kinect was even available. In this frame-
work, the skeleton data is estimated based on the difference to previous frames. Before
recognising a person’s skeleton, it has to be initialised with a special pose each time the
user enters the captured space.

As Microsoft licensed PrimeSense’s hardware technology for the use of the Kinect sensor,
an own motion capturing algorithm was developed. It does not depend on previous states
but regards each depth frame independently, which makes the recognition more robust.
The algorithm, which was first only used for the Xbox gaming console was recently also
released as part of an official framework for PCs, the so called Kinect SDK [Mic11a]. It
includes the drivers for the device, a middleware component for skeleton estimation and
interfaces for third-party software to access all these data. This framework was used in
this work, as it provides a reliable skeleton estimation method.

The algorithm used in the Kinect SDK is described in [SFC+]: The object recognition is
done by a per-pixel classification into body parts. For this classification, decision trees
were built from a large dataset. This dataset in turn was gained from skeleton data of
a traditional motion capturing system and depth pictures which were synthesised from
these skeletons. As the depth maps were generated, their respective true skeleton was
exactly known. In the synthesis of depth images, different body sizes, shapes and clothing
were created to make the final classification more robust. If this trained decision tree is
applied to each pixel of a Kinect depth frame, each one is classified to belong to a respective

24

3.3. Frameworks

body part with a certain confidence. The joints are then inferred from these body parts.
The procedure is illustrated with examples in figure 3.3, where the raw depth image, the
classified body parts and finally the inferred joints can be seen.

As with this method, the type of body part and therefore the type of joint is inherently
classified at the same time, the skeleton bones can be simply connected between their
corresponding joints. Even though the algorithm is even able to reconstruct parts of the
skeleton if the person is not completely pictured inside the depth image, there are several
restrictions with this method. Only two persons can be skeleton tracked at the same time.
Furthermore, a person that is facing away from the Kinect can not be distinguished from
one facing towards it. Also, occlusions that happen when a person stands sideways to the
sensor makes the skeleton estimation difficult. Therefore, the best results are achieved if
the person faces very roughly into the Kinect’s direction. These restrictions were accounted
for in collecting the test data, as can be seen later.

25

3. Supervision Sensor

26

4. Machine Learning

As seen before, there are given measurement values from the sensors of the mobile device
and the corresponding target values, also measured by a sensor in the learning process.
These target values are taken as the ground truth to train a suitable machine learning algo-
rithm. This kind of training is called supervised learning, where the algorithm is provided
with pairs of input and output parameters which have to be brought into relation with
each other. In contrast to unsupervised learning, where clusters, patterns, etc. are searched
within the given data, there is a ‘teacher’ that provides the correct function value to a given
input. The task of the learning algorithm is now to find the unknown function that pro-
duces these output values. It can directly verify the quality of its attempts by comparing
its function values with the actual values from the teacher.

Several considerations have to be taken beforehand, however, that apply to any of the
classes of supervised learning approaches. There is a trade-off between the computational
cost, i.e. either the asymptotic or the actual runtime behaviour of the algorithm, and the
accuracy that can be achieved. The processing time needed to train mainly depends on
the type of algorithm that was selected for the task, if the number of dimensions is held
constant. However, having decided for a specific approach, the number of dimensions not
only has influences on the computation time, but can also have other impacts. Working
with high-dimensional spaces, it is possible that some parameters that are in fact irrelevant,
appear by change to be useful to the learner. Such a so called overfitted model is not only
computationally more expensive, but also introduces a new error source: new data, that is
not exactly matched by any previously learned data set, can lead to results that are much
farther away from the expected value than with a lower-dimensional better fitted model,
just because the irrelevant dimension interferes with the process. Following the principle
of Ockham’s razor, if multiple consistent models can be constructed from the input data,
the simplest should be preferred. In this case simplicity can be defined as the number of
dimensions, where less are to be preferred.

A similar argument applies to the selection of the machine learning algorithm. During the
researches of this work, it became apparent that the selection of various different learning
algorithms does not affect the accuracy of the results nearly as much as the addition of
assisting domain knowledge. Such knowledge can be brought into the system by defining
constraints, transforming the input data into more suitable representations and tuning the
various parameters of the respective algorithm. These methods and their impacts will be
presented and discussed throughout the next chapters of this work. It turned out, that
algorithms with a concise and clear functional principle shall be preferred, if more com-
plex methods are not significantly improving the overall accuracy. The results of a more
complex algorithm are harder to keep track of and the chance of introducing new sources
of error increases.

27

4. Machine Learning

4.1. Algorithm selection

As the goal of this work is to reconstruct body geometry from inertial sensor data, it is
essential to clarify in which form the input is available, what the desired output should
look like and which classes of supervised learning algorithms are consequently suitable
for this task.

The presented inertial sensors as well as the virtual fused sensor deliver a constant stream
of floating-point numbers. Although limited by the finite and discrete floating-point repre-
sentation in memory and ultimately even more by the accuracy of the sensors themselves,
those numbers can be assumed continuous values for the purpose of this discussion.

At first glance, the raw measurement values of the triaxial sensors do not seem to have an
obvious relation to the device’s orientation and therefore seemingly do not allow to draw
conclusions about body geometry. However, as already described by the sensor fusion
process, this information is contained in the raw streams and can be extracted by it. Other
features can be extracted as well by using implicit knowledge about the situation of the
mobile device and correlations between various sensors. These transformations will be
described in the next chapter.

As will be seen, these will mainly directly linear relationships between those features and
the desired body geometry features. For these types of problems, where continuous map-
pings of linear or non-linear relationships are underlying, the class of regression algorithms
is suitable. A special case of these is linear regression, where an optimal estimation for an
underdetermined linear system of equations is searched, as an exact solution can not be
found. In contrast to what the name might imply, the data itself that is used for training
and later on for prediction does not have to have a linear relationship. Instead, the co-
efficients which are trained go into the model in a linear fashion. First off, the principle
behind linear regression will be detailed in the following. It is also worth noting that an
excellent introduction to this topic is given in [RN10, chapter 18].

4.2. Linear regression

Linear regression is a way to analyse a relationship between a dependent scalar variable,
also called response, and a set of regressor values. In case such a relationship exists and has
the required properties, the response values are sufficiently explained by a subset of the
regressors or all of them. This means, that an function Rn → R exists that describes this
relationship, which is not known however. Given only a limited set of examples for this
relation, i.e. training data which is also subject to measurement errors, the tasks for linear
regression are:

• Fitting a model, such that this relationship is fully described.

• Qualifying the importance of each of the regressor variables for the model or deter-
mining regressors which have no relationship with the response at all.

28

4.2. Linear regression

4.2.1. Hypothesis space

To find the best fit in the training data set, a function h(x) is searched. This function
should be used later on to predict response values from given input values by simply
evaluating it. Those input values, or regressors, shall be defined as xj,i, where i = 1 . . . n
enumerates the number of dimensions, which is the number of features. Furthermore, a
dummy element xj,0 = 1 ∀j ∈ N is introduced for convenience, as can be seen later. The
index j determines the location of the n-dimensional vector xj in the dataset, which in the
case of this work is also the index of the time frame. Each time frame has a response value
that was also measured and represents the target value, the trained algorithm shall yield
given the regressor values. The training data is therefore a set of examples E and will be
defined as:

E = {(y0,x0), (y1,x1), · · · , (yN ,xN)}

with xj :=


xj,0
xj,1

...
xj,n


The training data can be visualized by a point cloud in a n + 1-dimensional space. Those
n + 1 dimensions are due to the i = 1 . . . n input features that map to a single target
dimension, i.e. the yj values. For example, a training set with n = 2 input dimensions
that map to a response can be depicted in a 3D graph, with each element of the set being
described by a point. The task is to find a function hw(xj) that is fitted to lie right inside
this point cloud and therefore having the least possible distance to each of the points. This
vague intuition can be formalized by restricting how such a function may look like and by
defining what is considered a good fit.

In the case of linear regression problems, all input parameters have a linear proportionality
to the response values. Then, the hypothesis space is defined as the set of function of the
form:

hw(xj) = w0 + w1xj,1 + · · ·+ wnxj,n = w0 +

n∑
i=1

wixj,i

However, other than the name may suggest, linear regression can also be used for non-
linear relations in the data. A linear model only has to be linear in the parameters that
need to be estimated. A model of the form w0 + w1xj + w2x

2
j is quadratic in x, but is a

linear model in the parameters w0, w1 and w2. In this case all xj can be substituted by xj,1
and x2j by xj,2 in both the learning and predicting phase.

The coefficients wi are real numbers and represent the weights that should actually be
learned. A special case is w0, the intercept or constant term. To get a more consistent

29

4. Machine Learning

syntax, the dummy element xj,0 that was introduced before, was defined to always be 1.
This way, all weight coefficients can be grouped into a vector w and the function can be
written as the following sum, or even simpler in the form of a matrix product:

hw(xj) =
n∑
i=0

wixj,i = w>xj

Later in this work, the following abbreviated notation will also be used for defining the
hypothesis space with their concrete response and regressor variables: e.g. y ∼ x + x2

which denotes a quadratic relation between the single regressor variable x and the re-
sponse y.

4.2.2. Errors and Loss

The ultimate goal is to minimize the error between a predicted value using the model and
the actual measured value. There are infinitely many possible metrics to quality such an
error, however. Therefore, a suitable functionL(yj , ŷj) is required that describes the loss be-
tween the measured value yj and the predicted ŷj = hw(xj). Such a function encapsulates
the metric for the error and should meet the requirements of linear regression. L(y, y) is
defined to always be zero, as there is no loss if the response is guessed exactly right.

The simplest example of a concrete loss function is the 0/1 loss, where L0/1(yj , ŷj) = 0 for
yj = ŷj and 1 otherwise. It can be utilised in classifications, where y holds one of several
discrete states. In this context however, this is clearly unsuitable, as both the input and
output dimensions are error-prone continuous measurements, which makes L0/1 yield 1
for almost all pairs of values.

For real-valued data, other metrics have to be found therefore. As the general intuition is
that small errors are better than large ones, the absolute difference can be taken for this
reason, i.e. the absolute value loss L1(yj , ŷj) = |yj − ŷj |. Another very important loss
function is the squared error loss L2(yj , ŷj) = (yj − ŷj)2, which gives large differences
between the two values much more weight than smaller deviances.

The empirical loss with respect to a loss function L of a hypothesis h is then defined as the
total loss over all N examples ∈ E:

EmpLossL,E(h) =
1

N

N∑
j=0

L(yj , h(xj))

4.2.3. Model fitting

To obtain the best vector of weights w∗, which in turn corresponds to the best fitting,
the empirical loss has to be minimized (the constant factor 1

N can be dropped for this
purpose):

30

4.2. Linear regression

w∗ = argmin
w

N∑
j=0

L(yj , hw(xj))

The temporal inaccuracies or noise of the sensor input values are expected to be normally
distributed. As such, they behave like uncorrelated random variables with an expected
value of zero and equal variances. The best linear unbiased estimator of the coefficients is
then given by the least squares estimator, as the Gauss-Markov theorem states (elucidated
in [Pla50]). The optimal vector of weights w∗ is therefore found by letting the loss function
be the squared error loss L2:

w∗ = argmin
w

N∑
j=0

(yj −w>xj)2

The minimisation is typically done with a gradient descent algorithm, as there is not neces-
sarily a way to do this in a closed form in higher-dimensional spaces. The gradient of a
function f : Rn → R is a vector denoted by ∇f and gives the magnitude and direction of
the steepest slope:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)
Starting at an arbitrary point w(0) in the weight space, a weight candidate w(τ) it is iter-
atively updated by going in the direction of the steepest descent. τ denotes the iteration
number. At some point, a local minimum will be reached eventually, where the algorithm
converges and the final weight settles. The step size is usually adjusted by multiplying
the gradient with a factor η, which is in this context also called learning rate. This has to
be carefully chosen, as too slow steps lead to a very slow convergence, whereas with too
large steps it may step over a relevant minimum completely. An update to a new step can
therefore be described by:

w(τ+1) = w(τ) − η ∇EmpLossL2,E (hw(τ))

There are many other variations of the gradient descent algorithm [Gar84] that improve
this basic method by more likely finding a global minimum than only a local one or which
are converging faster. Furthermore, other minimising algorithms, like for instance simu-
lated annealing [KGV83] amongst others, can be used to solve this optimisation problem
as well. In the end, there is always a trade-off between the quality of the results and the
runtime of the algorithm. More detailed discussions of gradient descent can be found in
[Sny05] and especially with emphasis on machine learning in [RN10] and [Bis06].

As the model is fitted by now, i.e. the supervised learner is trained, the estimated response
ŷ can be predicted from a set of new regressor values xnew by simply using these trained
coefficients w∗ and evaluating:

ŷ = w∗>xnew

31

4. Machine Learning

32

5. Preprocessing and Reconstruction

Before running the machine learning algorithm itself, the input data has to be transformed
and processed. The reasons for this are:

• A lot of the raw values are not applicable to linear regression, as well as to other ma-
chine learning approaches, without a preceding transformation. Such a conversion
is not necessarily lossy. In contrary, many of them are bijective mappings and are
reversible in the scope of the machines numerical accuracy, as can be seen in the next
sections.

• Domain knowledge can be used to transform input values in a way, that irrelevant
information is excluded thus only data of interest remain. The implicit knowledge
lies in the selection and design of the transformation function. This can also be useful
for reducing dimensionality in advance, as data of interest is sometimes contained
within a combination of several raw parameters. If done carefully, this can signifi-
cantly enhance the quality of the learners response, as there is a reduced chance of
including information into the learning process that is falsely classified as relevant,
i.e. overfitting the model. The risk with such an approach is missing relevant data
and therefore a decrease in overall result quality, as will be discussed in more detail
later on.

• The dependency of the response variable on chronologically preceding regressor val-
ues shall be examined in this work. As the time window needs to be sufficiently large
to inspect the influences on the results, the dimensionality would explode. Therefore,
the only feasible possibility is to reduce all values of the window to a set of charac-
teristic features. Those transformations will be presented later in this section.

5.1. Multiplexing

The first step of preparing the raw sensor streams for the learning process is multiplexing.
The word multiplexing is commonly used in the context of electronic switching or telecom-
munication, where several signals are combined into a single sequence that is transmitted
over a shared medium before being decomposed again into the original signals by a de-
multiplexer. In this work, the name was chosen for a method that is related to this, but
has a slightly different meaning. The goal here is not to form a stream that can be de-
multiplexed again, but solely to combine all input sequences to a single one that can be
processed further. The digital signal processing tasks of this specific multiplexer break
down into the following three steps:

33

5. Preprocessing and Reconstruction

1. Account for applying corrections to constant time offsets, i.e. delays that are always
present due to the duration of transmission.

2. Assure the synchronicity of measured events in all signals. This includes correcting
small deviations from an ideally constant frequency as well as harmonising different
periodicities of the various time-discrete streams.

3. Apply transforms and filters onto the latest n time frames of each input stream, as
discussed later, to obtain the values to pack into a new time frame of the output
stream. The packaging procedure represents the core of the multiplexing mecha-
nism.

5.1.1. Delay correction

For the first step, the correction of constant delays, several experiments were made to
determine those offsets of the various streams. Beginning with the sensor stream, its delay
originates from several effects: the sampling and digital signal processing in the sensor
hardware itself, the polling frequency of the mobile operating system, the sensor fusion
process, and the delivery of those chunks of data to the mobile application. They take time
and add up to the delay. In addition, the transmission of data to the computer over WiFi
network plays an important role.

For this work, however, it is irrelevant to know which exact effects are involved and how
they contribute to the overall result. Of importance are metrics about the total duration,
from the point in time when a physical force moved the device, to receiving the corre-
sponding data at the multiplexer. Moreover, it needs to be examined if this duration is
sufficiently constant or varies under certain circumstances.

Therefore, a small measurement environment was set up with a custom made software tool
that measures delays between an incoming sensor data frame and a keystroke. The mobile
phone was connected to the software and repeatedly carefully dropped onto the keyboard.
The sensor data frames were then inspected and the first one with a deceleration above a
certain threshold was taken as the point in time the device was not only hitting the key,
but already pressing it. Together with the timestamp of the key press, which has a delay
in the magnitude of only hundredths of seconds, it became possible to infer the timespan
between the two events. With the knowledge that a keystroke timestamp is very close to
the physical event, the delay of the sensor data could be deduced. After nearly hundred
measurements, it was evident that the delay is sufficiently constant and approximately 150
ms. The errors of the delay samples, as a consequence from the experiments, are normally
distributed.

Following measurement of the delay of the sensor stream, the delay of the Kinect stream
was to be determined as well. As stated earlier, this depth sensor delivers a handful of
different streams. In the context the only one of interest is the sequence of sets of skeleton
joint coordinates. The skeleton is extracted from the depth frame by software in the Kinect
framework. The depth frame, in turn, was generated by a hardware unit in the device, us-
ing infra-red images of the camera for this purpose. All these processing steps require time

34

5.1. Multiplexing

time in ms

0
5

10
15

do
ub

le
 in

te
gr

at
ed

ac
ce

le
ra

tio
n

(d
ev

ic
e

po
si

tio
n)

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

po
si

tio
n

of
 th

e
ha

nd
ho

ld
in

g
th

e
de

vi
ce

−2
0

2

lin
ea

r d
ev

ic
e

ac
ce

le
ra

tio
n

in
 g

Figure 5.1.: The plots show a delay between the sensor and Kinect values at the input of
the multiplexer. Note that the function values of the phone position and the
hand position are not of the same magnitude due to using different coordinate
systems.

and produce a certain delay between a physical event and the arrival of the corresponding
skeleton data at the multiplexer. Because of this, another test was set up.

For this reason, another test was set up. While observed by the depth sensor, the device
was held in the right hand, while the arm was moved up as quickly as possible. After
a short pause, the arm was lowered again and the whole process was repeated several
times. At the input of the multiplexer, the packet arrival times of both streams were saved
as well as the two parameters of interest: the y-coordinate of the right hand and the linear
acceleration values of the respective axis of the phone. The acceleration values are hereby
rectified to cancel out the force of gravity.

Figure 5.1 shows both these values plotted over the recorded timestamps in the topmost
and bottommost plots. To get a better comparison between them, the acceleration was inte-
grated twice to get the position, after an intermediate step of the velocity (first integration).
This can be seen in the middle of the two other plots. Note, that the sequence was slightly
adjusted by piecewise addition of constant summands, purely for illustration purposes.
The double integration multiplies small errors in the acceleration measurements to huge
drifts. The sampling resolution as well as the tolerances of the sensor are not sufficiently
fine grained and would not allow for plots of this precision. The temporal progress, how-
ever, was not modified by these adjustments, i.e. both the ascent and descent are located

35

5. Preprocessing and Reconstruction

exactly at the same point in time in the original, non-adjusted plot.

The figure shows a representative section of the series of measurements. At the first local
maximum of the acceleration graph, the Kinect skeleton stream already reports the new
position of the hand. At the point in time, the sensor also returns the new position, some
time is already elapsed. The same can be seen in the opposite direction later in the graph.
The smoothness of the double integrated graph is due to filtering in the sensor fusion pro-
cess as well as due to inertia of the sensor. After inspecting a multitude of measurements,
it turned out the offset value in question is constantly at about 80 ms. A slightly modified
experiment using rotational values about the attitude of the device yielded almost exactly
the same delay. In this second test, the changes in direction for the measured sensor values
have even been easier to identify.

The Kinect therefore responds around twice as fast to movements that sensor readings
do, with about 70 ms delay compared to 150 ms, respectively. It is assumed that for the
most part this delay is caused by the sensor hardware and software stack on the mobile
phone itself. However this will not be verified further in this thesis. To compensate for this
difference in delays, the multiplexer needs to ensure it buffers incoming skeleton frames
and for multiplexing with a sensor frame, takes one that is about 80 ms older.

5.1.2. Frequency harmonisation

As frames of the input streams that should be aggregated by the multiplexer are not guar-
anteed to arrive at the same frequency, this has to be taken care of before multiplexing.
There are several ways to approach this issue:

1. One stream represents the primary stream. Any time a frame arrives from this
stream, a new output frame is packaged and released. The frequency of the mul-
tiplexer is then equivalent to the primary stream’s rate.

2. The multiplexer runs at some designated frequency and polls the last arrived frame
of each stream periodically to package a new output frame. The multiplexers fre-
quency is then both constant and independent from any of the input streams.

3. Aligning the various input frequencies by resampling them into a common period.
Again, the multiplexer has its own clock generator, but this time all values of each
stream are manipulated and forced onto this global period.

The advantage of the first two methods is clearly the simplicity, which particularly makes
them computationally inexpensive. However, any stream which is not consistently peri-
odic is left untouched, which could cause problems with extracting time-dependent fea-
tures that require equidistant time-series as an input, as can be seen later in this chapter.
This issue is addressed by the third method, that not only harmonises all involved fre-
quencies but also regularises the periods within each stream. This can only be achieved
by resampling the streams, which in turn implies that the values contained in the frames
can not be taken as they arrive, but are to be interpolated in some way that conserves the
original signal.

36

5.1. Multiplexing

0 30 60 90 120 150 180 210

time in ms

st
re

am
 2

−1
 0

1

st
re

am
 1

−1
 0

1

1 2
3 4

Figure 5.2.: Two non-equidistant data sequences over time. Circles depict original values
of the stream, crosses mark inferred values. Four different methods of harmon-
isation are shown: either the first stream is set as the primary stream 1 or both
streams are forced to a new frequency without 2 , with linear 3 or with cubic
spline 4 interpolation.

Resampling in the scope of digital signal processing is usually done by upsampling the
signal by an integral factor, filtering out alias spectra in the frequency domain and fi-
nally downsampling it again with a so called decimator [Por11, DKL98]. This can be
approximated by interpolating between n points in the time domain for those basically
non-periodic signals, that are given in this context. That way, it can even be accounted for
non-equidistantly spaced discrete signals. Figure 5.2 shows two such interpolation meth-
ods: linearly between two data frames 3 and via cubic spline interpolation over three or
more points 4 .

It can be seen, that the multiplexer needs to look back in time to a certain degree, having
both data that are older and newer than the point in time the frame should be extracted.
If at some stream, a newer frame did not arrive in time, it is to be extrapolated, which
is not desirable at all. Extrapolation in this case means to predict the future. It is thus
not guaranteed to yield useful results when applied to such non-deterministic streams. To
minimize the probability of not having a newer data frame at the multiplexers disposal,
the timespan to look back needs to be chosen sufficiently large. This, in turn, implies that
additional delay is introduced into the overall system.

Even worse, there is a second issue with the interpolation approach: apart from creating
delay, it is non-trivial to interpolate between complex higher-order objects like skeletons,
quaternions and the like. Non-trivial in this context means both high computation cost
and several possible approaches to interpolate each of those complex types. Each of them
would have its own advantages and disadvantages and different impacts on the overall
result of the machine learning process.

Complex structures pose difficulties, as do seemingly simpler sets of numbers. Interpolat-
ing between angles, for example, needs special treatment, as there are two possible ways
the rotating motion could have lead from the first to the second angle. In this case, usually

37

5. Preprocessing and Reconstruction

a circular interpolation method is used, that is presented later in this chapter in another
context. This method always interpolates over the shorter path around the circle. This
however, still does not solve the problem entirely. As a contrary example, one could imag-
ine a series of measurements of an angle ∈ (−π, π]: The sequence begins with some values
near −π and suddenly jumps to a little under π. Interpolation between the two points
before and after the jump would yield an angle very close to either −π or π, assuming the
series wrapped around its boundaries, as this is the shorter path. In reality, however, it was
just a rapid jump around nearly the whole circle, with a true intermediate value of around
0. The algorithm can impossibly know which is the right choice and therefore takes the
more probable one.

From a signal processing perspective, it could be said that the ambiguity was already intro-
duced with the initial sampling where the signal had a frequency higher than the Nyquist
frequency. A resampling can then impossibly compensate this, instead more than likely
makes it even worse. In conclusion, it can not be guaranteed that this does not introduce
errors that would not have occurred otherwise. This example illustrates, that even with an
appropriate interpolation method, data is likely generated, that was actually never mea-
sured and is erroneous. Those values would then be taken as truth by the machine learning
algorithm and could suddenly lead to false conclusions.

The issue gets even worse when regarding two sets of Euler angles in three dimensional
space. Here, the gimbal lock effect can cause unexpected interpolation results. To solve this
problem, quaternions are used to store the devices attitude, like already presented, which
are transformed back into Euler angles at the latest possible point in time. Rotational
quaternions, which lie on the unit hypersphere, can not be interpolated by treating their
four components independently, because the result is no longer guaranteed to be a unit
quaternion. However, there exist methods to do a linear (Slerp) and even a cubic (Squad)
interpolation between two quaternions, like described by Dam et al. in [DKL98].

A naı̈ve approach for getting an intermediate version between two skeletons can also lead
to problems. When only regarding the joints separately and interpolating between the
two joint positions in Cartesian coordinates, the bones between them can be skewed in
length. To obtain reasonable results, the kinetic chain is to be processed hierarchically.
This is realised by transforming the vector between each two connected joints into polar
coordinates, interpolating the angles and length separatelly before recomposing it back to
the resulting skeleton.

With all those aforementioned difficulties, a solution that drops the need for interpolation
altogether is favourable over one that requires it. This is especially true in the context of
this work, where tests have shown that the input streams have a sufficiently fine grained
temporal resolution as well as stability in frequency, such that possible improvements by
resampling can not rectify the uncertainties and errors the method introduces. Indeed, it
has shown that the Kinect skeleton stream is very constant in its frame rate. The timespan
between two arbitrary frames was measured to be normally distributed with a mean of
32 ms and a standard deviation of about 1.2, meaning that there is a 90% change of this
duration only varying by at most 6 ms to each side. With the frequency of this stream
being this stable, it was taken as the primary stream that sets the pace of the output se-
quence, superseding the need for an own clock generator in the multiplexer. The output

38

5.1. Multiplexing

frequency, resulting to a rate of about 31 time frames per seconds is also a good choice for
the following reasons:

• This corresponds to the frequency of the Kinect skeleton stream, like stated before,
which renders the introduction of an extra clock generator unnecessary.

• The frequency is low enough to not be disturbed significantly by task scheduling on
modern computer hardware and can therefore be processed approximately in real-
time, i.e. with fixed equal periods.

• At the same time, the frequency is high enough to reach sampling rates that are re-
quired to observe movement patterns of persons. Following the Nyquist-Shannon
theorem [Nyq28, Sha49], the sampling frequency has to be at least twice the largest
frequency that should be reconstructable from the input signal. Movements of inter-
est for this topic happen in the magnitude of at most tenths of seconds and therefore
require a sampling rate of approximately 20 times per second or more.

• If the resulting output stream needs to be visualized in any form, a frequency of
about 25 to 30 images per second is just sufficient to produce a fluid moving picture,
as this is also the common range of frame rates of video sequences [RM00].

The sensor stream, that is sent over the network to the computer to arrive at the multi-
plexer, was measured to have a stronger deviance from the ideal equidistant pattern. This
is mostly due to side effects of the wireless network transmission. Also, on the device a
pulling rate for new sensor values of 50 ms was chosen. At higher frequencies, the signal
begins to become staircase-shaped, as it reaches the limits of the underlying subsystem of
sensor hardware and software stack. Although this is the fastest possible rate, it is still
slower than the chosen output frequency of the multiplexer, in particular by a factor of
about 1.5.

Due to these more disadvantageous prerequisites, it was tested whether treating specif-
ically this stream with interpolation yielded improved results. The effect proved to be
negligible, however. For the sake of simplicity, the overall harmonisation method was de-
cided to just take the last respective frame of the sensor stream, leaving it unmodified for
packaging.

5.1.3. Packaging

Having adjusted all input streams by their constant delay and corrected their frequencies
to be equal and synchronous to each other, the actual multiplexing can be done by packag-
ing them into the output stream. Right before this is the only possible time of calculating
features that depend on information of past time frames, as they are now equidistantly
spaced. The n last frames with m values each are then reduced to k < mn time-dependent
features, using methods elaborated later in section 5.3. After each multiplexed output
frame, the majority of those input values stay the same, with only being joined by n new
values of the next input frames and dropping the oldest n values in return. This way it rep-
resents a sliding window over the input streams. Figure 5.3 illustrates this process.

39

5. Preprocessing and Reconstruction

time-dependent features

input streamsn

sliding window

current frame

multiplexed output stream

Figure 5.3.: Adjusted and harmonised input streams with their frames being filtered and
packaged into frames of the output stream in the multiplexer. A sliding win-
dow over the n newest time frames is used for extraction of time-dependent
features.

Finally, a stream of entirely independent frames was generated. The effects like delay and
irregularity have been compensated and therefore abstracted from the following process-
ing steps. Required information about past measurements is not lost, but included in those
time-dependent features that have been calculated. This also reduces dimensionality dras-
tically. The multiplexed frames can be processed further without need to keep the order.
This enabled an approach to do tests on the regression results later in the evaluation: the
set of multiplexer output frames can be arbitrarily partitioned without any problem.

In the following, different features that were studied in the context of this work are pre-
sented, together with the methods to calculate them. Because of the multiplexer, those
features can be regarded and computed detached from chronological dependencies. The
first feature that is presented, which is also one of the most important ones, is going to be
the heading.

5.2. Heading calculation

The sensor fusion algorithm provides attitude information, that has all 3 rotational degrees
of freedom in the euclidean space. It outputs a rotation quaternion, as this is free of effects
like gimbal lock. A very key feature that is included in the attitude is the heading infor-
mation, also called bearing. This is a single angular value that specifies the direction the
device is facing at, on the x, y-plane, which is the ground plane. The heading is essential
not only to allow to reason about the direction the person is facing at, but also to make

40

5.2. Heading calculation

the attitude invariant of the bearing. This is an important simplification for the machine
learning process, as can be seen later.

However, there is no common definition for the derivation of such a value from the at-
titude. A function that will yield the heading, fh : H → (−π, π] basically projects a unit
3-sphere in 4-dimensional space onto the unit circle, a compact set which in turn can be
easily mapped to the (−π, π] interval, finally resulting in a value of 1 dimension. There
are many possible ways to construct such a function. To get results that are meaningful,
i.e. follow the intuition behind the bearing, the following requirements to such a mapping
were defined:

• The heading must be consistent with the rotation around the z-axis. This means,
given an arbitrary attitude, represented by the unit quaternion qa, its rotation around
the z-axis by some arbitrary angle θ has to add the same angle to the corresponding
heading. Therefore, q′a = qrqa ⇒ fh(q′a) = fh(qa) + θ (mod 2π) must hold, where
qr = cos(θ2) + 0i+ 0j + sin(θ2)k is the unit quaternion that defines a rotation around
the z-axis with angle θ. The only exception is given if the attitude is located right at
a singularity of fh and therefore fh(qa) is undefined.

• The required function fh has to be stable for almost all attitudes qa, i.e. small changes
in any of the quaternions dimensions should lead to only small changes in the final
heading. This is essential for obtaining a meaningful mapping, as functions with
deterministic chaotic behaviour are practically useless, as the input values are subject
to errors and noise, which would then be multiplied in the output values.

Nonetheless, in the second requirement the stability can not be assured for each and ev-
ery possible attitude, because there will always be poles in such mappings. This is due
to effects like the gimbal lock, that are unapparent with rotation quaternions but emerge
when projecting them onto lesser-dimensional spaces. The target is therefore to design a
mapping that has those singularities at locations that are typically not touched to reduce
occurrences of jumps in the output values. This is possible, because the probability distri-
bution of attitudes that are likely to occur when carrying a mobile phone in the pocket is
not evenly spread over all possible values. Consequently, a metric was searched for, that
models this matter of fact.

5.2.1. Characteristic vectors

The starting point for modelling such a function is to look at typical attitudes of the mobile
phone. One of them is when the device lies flat on the ground. It can be rotated around
inside this plane like a compass. One could argue that it is reasonable to say it points to-
wards the upper side of the display then. This characteristic vector that points from the
bottom to the top inside the display plane shall be called ~w. Considering the two other or-
thogonally aligned rotation axes, the heading should stay constant while rolling the device
around the ~w vector, as well as pitching it up and down to a certain degree.

The conclusion according to this would be that the vector ~w just has to be projected onto
the ground plane and the heading can be directly inferred by the direction this vector

41

5. Preprocessing and Reconstruction

Figure 5.4.: Different device attitudes together with the respective characteristic unit vec-
tors and their projections onto the x, y-plane are shown. Unit circles are de-
picted with a dotted line.

is pointing at. This certainly is a practicable model. However, it suffers from a major
disadvantage: the singularity of the mapping appears right when the device is standing
upright. In this situation, the vector is orthogonal to the plane which implies that the
projection contracts to a point. This very attitude of the device, however, is a very common
case.

To compensate for this, the consideration goes further by focusing on this case isolated
from the previous one. A reasonable heading of an upright standing device can be seen in
the direction of a vector, called ~v in the following, that pierces through the display to the
backside of the device, i.e. the direction a user is looking at if he watches the display. Here,
again the same issue appears, except for the singularity occurring when the phone is lying
flat on the ground.

5.2.2. Reduction to single angle

The solution for avoiding those singularities at common attitudes is simply to combine
the two methods, using the first one if the device is oriented approximately parallel to
the ground or the second one if it is rather perpendicular to it, respectively. Orientations
in between those can then be interpolated to create a smooth transition. For such a lin-
ear interpolation, also called lerp, a metric is needed to determine which vector should

42

5.2. Heading calculation

have more influence in a particular case and how much exactly. Taking the length of the
projected vector ~w′ has proven to be an applicable choice for this.

It resembles the scheme mentioned just before: If the device is nearing an orientation par-
allel to the floor, the projected vector approaches its maximum length, while shrinking to
a minimal length of 0 when reaching the upright position. The opposite is true for the
projected vector ~v′. If laying on one side, both projections of the vectors have maximal
length. For this reason it was decided to just regard the ~w vector as the primary one and
let the secondary only grow in influence, if the primary is shrinking at the same time. It
seemed natural to let both vectors ~w and ~v be unit vectors to make sure the projections
euclidean norms are ∈ [0, 1] and can be used as interpolation weights. Figure 5.4 shows
a device in certain attitudes, the corresponding vectors and their projections to the floor
plane to visualize the whole process.

To formalize the described method, the vectors ~w and ~v are now found by taking the basic
unit vectors (0, 1, 0)> and (0, 0,−1)> and rotating them with the given rotation quater-
nion:

qa(0i+ 1j + 0k)q∗a = wxi+ wyj + wzk
qa(0i+ 0j − 1k)q∗a = vxi+ vyj + vzk

Where q∗ denotes the quaternion conjugate of q and quq∗ is the Hamilton product that
rotates a vector u with the rotation given by q. The projections onto the x, y-plane are then
given by omitting the z-components to form the 2D-vectors:

~w′ = (wx, wy)
>

~v′ = (vx, vy)
>

The heading angle of both those 2D-vectors can be found with the help of the two-argument
arcus tangent function atan2(y, x), which directly yields an angle in the interval of [−π, π]
and is defined as:

atan2(y, x) :=



arctan y
x if x > 0

arctan y
x + π if x < 0, y ≥ 0

arctan y
x − π if x < 0, y < 0

+π/2 if x = 0, y > 0
−π/2 if x = 0, y < 0
0 if x = 0, y = 0

The weight for the interpolation is given by the length of ~w′, i.e. α = ‖~w′‖, as already
mentioned before. The heading function is therefore defined as:

fh1(qa) = α atan2(wy, wx) + (1− α) atan2(vy, vx)

There is a problem with this function, however: it does not take into account the cyclic
nature of the two angles to interpolate. As a simple example, the arithmetic cyclic mean of

43

5. Preprocessing and Reconstruction

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

1
+

e−
1
6
(x

−
1 2
)

x

Figure 5.5.: The adjusted logistic function for refining the linear interpolation weight. ω is
set to 16 for this plot.

−π and π
2 is 3π

4 instead of −π4 , which the linear interpolation would yield. Such a wrapped
lerp is equivalent to first interpolating the vectors and extract the heading out of the re-
sulting vector, i.e. interpolating in cartesian coordinates instead of polar coordinates. The
function is then defined as:

fh2(qa) = atan2(αwy + (1− α)vy, αwx + (1− α)vx)

The impacts of a non-cyclic interpolation will be discussed in more detail later on and are
going be visualized with the aid of an example.

5.2.3. Further refinement

With linear interpolation, the vector with smaller weight can influence the result much
stronger than intended, as can be seen in an example later on. A possibility to counteract
this would be to adjust the weight α used in the interpolation process, such that values
of α near the boundaries of [0, 1] are pushed further against these. A specially modified
version of the general logistics function P (x) = 1/ (1 + e−x), that is not centred around 0,
but around 1

2 is designed to achieve this. It maps values of α in the interval [0, 1] to itself
(figure 5.5 shows a plot of the function). It can be used to produce a new weight α′ = P ′(α)
that can then be used inside the lerp function. It is described by:

P ′(x) =
1

1 + e−σ(x−
1
2
)

Just like the general logistic function, it has two asymptotes, as the function converges to 0
for x→ −∞ and 1 for x→∞, respectively. This function is used to adjust the weight of the
linear interpolation between the two angles, where the normal linear interpolation would
have to much weight on the farther located value, if it is very large. It maps the interval

44

5.2. Heading calculation

of valid interpolation weights (not regarding extrapolation) onto the same interval again,
but giving values near 0 or near 1 a stronger weight.

As it showed in several experiments, the horizontal scaling factor ω proved to produce
the most suitable results for this purpose in the range of about 12 to 18. In practice, the
selection of this parameter was a trade-off between the slope of the function at around
x = 1

2 and the actually beneficial weight that is added by applying the function. With
choosing smaller values, the function becomes very similar to the identity map f(x) = x in
this interval, which nullifies the purpose of the whole process. Larger values for the scaling
factor ω lets it approximate a function that cuts input values at a threshold at x = 1

2 and
returns only values very near to 0 or 1. This, in turn, nullifies the need for an interpolation
altogether.

The factor 16 was therefore chosen, as it lies in between those boundaries and has the
advantage of being a power of two. This way it allows for easy multiplication with the
value in the implementation, as the floating point representation in current computers is
based on a binary mantissa and exponent. The addition of 4 to the values exponent is
therefore equivalent to the multiplication of the number with 16, moreover even leaving
the mantissa untouched and avoiding numerical errors completely.

5.2.4. Discussion and analysis

To illustrate the practical advantages of the aforementioned method for determining the
heading, common positions and transitions in between them will be elaborated in the fol-
lowing. Figure 5.6 helps hereby, with showing exemplary time series of bearings of the
two projected candidate vectors ~v′ and ~w′ and the weight variable, deviated from the eu-
clidean norm of ~w′, i.e. ‖~w′‖. These three parameters are calculated from real attitude
measurements via the just presented method and are plotted to the left-hand side. They
are then used for the interpolation results. The results of each of the three methods can be
seen in the right-hand plots, listed underneath each other for direct comparison.

First off, the assumption, that linear interpolation between the two candidate vectors is
sufficient, can be rejected because it generates inconsistent result angles for some attitudes.
This is the case, if the projected vectors do not point in the same direction and especially
becomes apparent if the weight is near 0.5, where both fractions have influence on the
result. This can be easily explained by considering that this naive approach treats bearings,
i.e. cyclic quantities, like elements of a linear interval. The impact is severe: it violates the
basic requirement of the resulting heading value being invariant under rotating around
the z-axis.

Figure 5.6 shows an example of this in about the first 3 seconds of time. The upright
standing device was slightly tilted to the side for this purpose, i.e. around the y-axis. This
way, the two vectors point in directions 90◦ displaced from each other and being about
equally weighted. With this attitude held stable, the device was rotated around the z-
axis to move alongside different headings. It can be seen in the resulting plot at point
1 , that there is an instant jump by a magnitude of π as the angle of ~w′ wraps around

45

5. Preprocessing and Reconstruction

an
gl

e
of

−
π
−
π

2
0

π
2

π

an
gl

e
of

−
π
−
π

2
0

π
2

π

w
ei

gh
t

0
0.

5
1

0 3 6 9 12

time in s
le

rp
−
π
−
π

2
0

π
2

π

w
ra

pp
ed

 le
rp

−
π
−
π

2
0

π
2

π
time in s

ad
ju

st
ed

 &

w
ra

pp
ed

 le
rp

0 3 6 9 12

−
π
−
π

2
0

π
2

π

1

2 3

Figure 5.6.: Example measurements of transitions which show critical cases of the heading
calculation. The input parameters, used by all three approaches are given,
together with each methods resulting values for comparison.

its boundaries. Even though it is just a slight movement, it turns the resulting bearing
completely around to the opposite side.

This issue is addressed by an interpolation method that takes into account the cyclic na-
ture of the involved angular values, as presented before. This wrapped lerp method, like
shown in the middle right plot, has a completely continuous line for the given input se-
quence. The only seemingly discontinuous location right at the start is just due to the
representation of angles in this particular plot.

The example continues after 3 seconds with holding the heading of the device constant,
laying the device flat on the ground and rotating it back and forth around its longitudi-
nal axis, i.e. the vector ~w. In a third phase, it was put upright again to slightly tilt it
forwards and backwards between the 9 and 11 second marks. Both those phases have a
strong weight on either of the two vectors, first on ~w′, then on ~v′. However, the markers 2
and 3 show various points which are distorted from the expected constant bearing value.
This is due to the rapid jumps of the angle around 180◦ while it passes the pole, where its
corresponding original vector is aligned orthogonally to the ground plane. Even though
this vector has minimal weight and therefore the other one is privileged to be used to de-
termine the bearing, those large jumps influence the result and produce those little bumps
in the plot.

The solution to this problem was presented as a readjustment of the weight parameter

46

5.3. Regression feature extraction

with the modified logistics function. The results of the application of this function before
applying the wrapped lerp can be seen in the bottom-most plot on the right-hand side.
The line of bearing values over time is now continuous and very smooth, without even
applying any lossy filters or frequency passes. This way it is stable and reacts to changes
rapidly at the same time, because it is still time-invariant.

Now that the heading of the phone is known, it can be used as the starting point of calcu-
lation for several regression features, as can be seen in the following section.

5.3. Regression feature extraction

One of the most important goals of this work was to find significant features, that allow for
a well suited linear regression model. They can be classified into two groups: the regressor
features that are established from raw sensor values and the response features that will be
used as a target of the regression hypothesis. In the following, the set of regressor features
will be detailed. The question of which of these features are better suited for the overall
goal will be left open for the evaluation chapter.

5.3.1. Elementary features

The very first feature was already presented: the heading angle of the mobile device. This
is the most important feature for inferring the users heading, as further described later in
section 5.4.2. It is furthermore used for making some of the other features independent of
the heading.

The next basic feature is the attitude of the device, which is also one of the most essential
ones. The mobile device can be regarded ‘attached’ to the users body as he carries it in
his pocket. This way, each pose is invariant of any absolute heading of both the user and
the device, as both are in the same local reference frame. If this frame is rotated in the
ground plane, both the person and its phone are rotated at the same time. This forms
an equivalence class containing all possible headings. As a consequence, this dimension
can be disregarded for pose estimation purposes and only be used for the user heading
estimation. The omission of this dimension showed to have a large positive impact on
the stability and generalisability of the pose estimation. Any pose that is trained looking
in a certain direction is recognised in any other direction, too, without the need for being
trained separately. This is a prime example for the exploitation of domain knowledge: it
is a simplification that the machine learning algorithm can not make, as it does not know
the whole system and its properties it is embedded into.

However, since the heading is not only an isolated dimension, but is also contained inside
the attitude information of the fused sensors, it has to be filtered out of there in order to get
an attitude that is invariant of the heading. This is possible by using the isolated heading
angle to rotate the attitude in the opposite direction by the same amount, effectively can-
celling out the heading. The heading is defined to represent a rotation inside the ground
plane, which therefore has the planes normal vector as the axis of rotation, which is the

47

5. Preprocessing and Reconstruction

z-axis. Its rotation quaternion is therefore described by qr = cos(θ2) + 0i + 0j + sin(θ2)k,
with θ being the heading angle. The heading-invariant attitude quaternion q̂a can finally
be determined by rotating the attitude qa by the inverse of the heading q∗h:

q̂a = q∗hqa

It might seem strange that accelerometer readings are first combined with magnetometer
values via sensor fusion, just to separate both again later on. Yet, the presented separa-
tion is not the exact inverse process of the fusion. There are many details that are gained
using these two processing steps. The triaxial magnetometer data alone does indeed hold
the heading information, but it is much harder to extract without knowing the orientation
of the device. It would imply that the orientation has to be deduced from the magne-
tometer measurements as well, which is possible but much more unreliable than using the
accelerometer. It is also true that the gravity vector of the accelerometer already repre-
sents a form of heading-invariant attitude, but this in turn misses the stabilisation of the
gyroscope. Furthermore, the sensor fusion is required anyhow, as the attitude is used for
other features, presented in the following. As a last reason, the very specially designed
heading calculation yields a result which is slightly different from the raw magnetometer
heading. Using this angle together with the fused sensor attitude for the calculation of q̂a
preserves the best properties of both to avoid singularities and have a smooth, responsive
and accurate attitude stream.

Having the heading-invariant attitude, it is finally converted to Euler angles. These three
angles will then be used as regression features in the machine learning process. The con-
version of a quaternion q = q0 + q1i+ q2j + q3k into the pitch φ, roll θ and yaw ψ angles is,
like described in [Die06], defined as

φθ
ψ

 =

 atan2
(
2(q0q1 + q2q3), 1− 2(q21 + q22)

)
arcsin (2(q0q2 − q3q1))
atan2

(
2(q0q3 + q1q2), 1− 2(q22 + q23)

)


5.3.2. Statistical features

The three aforementioned features, i.e. the attitude 3-tuple of Euler angles, are in turn
going to be the starting point for further features that are dependent over time. The fol-
lowing statistical features are formed using all of these 3-tuples in the time window, which
is n elements large:

• The mean over all n sets for each angles

• The standard deviation over all n sets for each angles

• The Pearson Correlation Coefficient [Lee12] between each two different angles over all
n sets

48

5.3. Regression feature extraction

This results in nine additional features: the mean and standard deviation of the past n
values of pitch, roll and yaw as well as three features about the correlation between the
past n pairs of pitch-roll, pitch-yaw and roll-yaw respectively.

For an efficient processing, the calculation of these features was implemented by directly
accessing circular buffers, which are in turn iteratively filled with the most recent attitude
angles. Using this data structure, values of the sliding window do not have to be copied
each time, but are staying in place while the newest value overwrites the oldest one in each
time frame, thus avoiding many memory accesses.

5.3.3. Periodicity features

Additionally to these statistical features, which are calculated with regard to the time do-
main, there will be three ones that are extracted from the frequency domain, one for each
attitude angle. The goal is to get information about periodic movements that are made, for
instance walking or running. These features help estimating the state of the leg opposite to
the one the mobile device is located. Therefore, the n values of the time window are taken
for each attitude angle and converted into their discrete spectrum via a Discrete Fourier
Transformation (DFT) [OSB99].

Efficient implementations for such a conversion are available with the so called Fast Fourier
Transformation (FFT) [Bri88]. Furthermore, it is possible to calculate the spectrum over the
sliding window even more efficiently. In each time frame, only two values in the time
domain are changed as the oldest one is dropped at the tail-end and a new one is appended
in front. By exploiting the circular shift property [Spr88], a Sliding Window DFT [JL03] can
use previous calculations of a spectrum for updating it to a new one instead of having to
calculate the whole transformation each time.

In the frequency domain, the periodicities can be seen by finding the largest of the discrete
frequency parts. However, if there is no significant movement, noise of the measurements
results into all frequencies being about equal which could lead to the selection of a very low
or very high frequency. As these frequencies contain no useful information in this context,
only frequencies in the middle are regarded. The range of human walking frequencies
starts at about 1 Hz, while running reaches up to about 162 steps per minute [CF86], which
is nearly 3 Hz. All frequencies outside this or a slightly larger range are omitted. Due
to the nature of FFT, which returns n

2 − 1 discrete frequency buckets for n input values,
the time window has to be chosen sufficiently large to allow for an adequate frequency
resolution. Furthermore, if no single frequency has a noteworthy amplitude, i.e. there is
no periodicity of interest in the signal, the feature should take a zero value. Therefore, a
suitable threshold has to be found in experiments.

There exist more advanced methods for determining significant periodicities in signals,
which use extended analysis of the signal in time domain [VM04] or utilise the circular
autocorrelation of a signal to refuse false periodicity candidates or refine the frequency
resolution for true candidates [VCY05]. These methods were not tested in the course of
this work, however, due to their complex implementation.

49

5. Preprocessing and Reconstruction

head
shoulder

shoulder center
elbow

wrist
hand

spine
hip center

knee

hip

foot
ankle

Figure 5.7.: The skeleton joints and their identifiers. Pairs of symmetric joints are distin-
guished by the additional identifier suffixes ‘right’ or ‘left’. The degrees of
freedom of each joint with their rotational axes are shown in the right illustra-
tion.

5.4. Response feature extraction

Having discussed only features that are inferred from the mobile devices sensor data, rep-
resenting the regressor values for the machine learning process, a key component is still
missing: the set of response values that will be used to supervise the learner. They repre-
sent the true body posture variables that shall be derived from the sensor measurements
alone. This is the feedback needed to train and fit the regression model as well as to verify
the accuracy of the results and test the statistical significance of various dimensions in the
fitted model. As outlined before, the Kinect skeleton stream will be used for this purpose
to extract features that relate to the regressor parameters.

Therefore, the principle topology of such a skeleton data structure will be outlined first.
Each skeleton is formed by a set of joints, each having holding the cartesian coordinates of
the joint in 3D space. Every joint has assigned a unique identifier out of those 20 defined
ones that can be seen in the left part of figure 5.7. The hierarchical structure of the skeleton
is given implicitly with these IDs. The bones connect those joints and represent the vertices
between the nodes of the tree formed skeleton, as can be seen in the illustration. It starts
at the root joint, the ‘spire’, which holds together two branches for each the upper and
lower parts of the body, until these fork into the left and right limbs as well as the head,
respectively.

50

5.4. Response feature extraction

5.4.1. Revolute joint model

Each of the joints between two bones acts like a hinge that enables motion in the skele-
ton. A consecutive series of such joints, which are connected by bones, form kinematic
chains. Examples for these chains are all four limbs. Putting everything together leads to
a 1 degree of freedom (DoF) revolute joint skeleton model. Both shoulders and hips are
special cases, as they have 3 degrees of freedom and can be modelled by collapsing three
consecutive 1 DoF revolute joints in the same position. Another way of dealing with those
special joints is to use quaternions for modelling spherical joints, like presented in [MR09].
The rotational axes of each joint in such a model are illustrated in figure 5.7 to the right.
These models are used within a lot of motion capturing techniques.

This model enables simplifications by reducing the number of values that are needed to
describe it. Instead of requiring 60 vector component values in the joint coordinate repre-
sentation, it can be boiled down to 22 angular values in the revolute joint representation.
It should be noted, that this applies only when assuming that the lengths of all bones stay
constant, which is a plausible assumption. This model transformation is similar to the
conversion of vectors from cartesian into polar coordinates. Furthermore, this allows to
separate the following four principal properties of the skeleton from each other, which are
inseparable in the cartesian joint model:

• Location. The position of the person that is tracked in euclidean space. This can
either be relative to a certain known location or absolutely in a given common coor-
dinate system. As positioning information is not part of this thesis, it can be dropped
in the context of this work. However, it is important to note that the skeleton can be
regarded independent of the location.

• Orientation. The basic orientation of the skeleton inside the ground plane, that
therefore corresponds to the heading information of the phone. A more general-
ized approach would be to allow the orientation to express the complete attitude in
3D space instead of only inside the ground plane. In this work, the orientation will
be defined by the normal vector of the plane that is specified by the spine, right- and
left-shoulder joints. This is reasonable, because this plane represents the torso of the
skeleton and the shoulders give the only possible approximation of the direction the
person is looking at.

• Posture. Having stripped off location and orientation of the skeleton, the core in-
formation is left over, that is the actual posture. This is described by the state of the
kinematic chains formed by the revolute joint model.

• Stature. Besides the three dynamic properties, this contains the static information
of the skeleton, which is the length of the bones. This stays constant for a specific
person, but varies between people. This is the reason, it does not have to be stored in
every single time frame and can be disregarded completely for the machine learning
process.

51

5. Preprocessing and Reconstruction

5.4.2. Relevant features

As described, stature and location information is not going to be used for features that are
passed on to the learner. The orientation, on the other hand, is one of the core goals of this
work. Also, there are several posture related features, inferable from sensor data, that will
be used further. All these will be discussed in the following.

Starting with the orientation, the goal is to find a feature that can be used for linear regres-
sion. Recall that the multiplexer has already packaged the current skeleton and all related
sensor features, including the calculated heading, in a single frame. This means, the phone
heading is known and the corresponding heading of the skeleton can be deduced from the
shoulder joints. There are now two possible ways of dealing with this data:

The first possibility would be to take the skeleton heading angle hskel j as the response
variable and make it dependent on the mobile device heading angle hdev j as well as on k
sensor features sj,1 . . . sj,k. Again, j denotes the index of the time frame. The dependence
on sensor features is really important here, as they contain implicit information about the
pose, which in turn influences the deviation of the phone heading from the skeleton head-
ing. Therefore, they have a strong relation to each other that has to be reproduced in the
model. This way, a linear relation hskel j ≈ c0 + c1hdev j + c2sj,1 + · · ·+ ck+1sj,k is assumed,
with coefficients c0 . . . ck+1 that need to be fitted by the learning algorithm. Note, that the
≈-sign means in this context ‘equal except for an error εj ’, where the εj are the differ-
ences between the measured response and the value predicted by the model, also called
residuals.

Another way would be to take the difference between the two heading angles of the phone
and skeleton, from now on called ‘heading delta’ ∆hj , and let it depend on the sensor
features. This models the correlation between the deviation of the two heading values
from each other and the pose directly. In fact, those two approaches are equivalent, as it
corresponds to this rearrangement:

hskel j ≈ c0 + c1hdev j + c2sj,1 + · · ·+ ck+1sj,k

hskel j − c1hdev j ≈ c0 + c2sj,1 + · · ·+ ck+1sj,k

∆hj ≈ c0 + c2sj,1 + · · ·+ ck+1sj,k iff. c1 = 1

(5.1)

Note, that the last step is only possible if c1 = 1. This means, that independently from the
direction, where the person is facing at, the mobile device is always some angle α displaced
from that. Different postures may result in different displacement angles, but if the pose is
held constant, α is constant as well. In other words again, if the device is attached to the
person and is rotating together with the person, this exact requirement c1 = 1 is met. As
this is the principle assumption, this work builds upon, this can be taken as given.

The second method turned out to be the better choice. Not only does it reduce the dimen-
sionality of the model by one, it also solves a problem with the heading angles: as the
values are ∈ (−π, π], a complete tour around the circle results in a discontinuous graph.
Due to the two angles being offset from each other to some degree, one of the two angles

52

5.4. Response feature extraction

reaches this discontinuity earlier as the other, resulting in a linear relationship only if it is
specially accounted for this cyclic nature. The second method was finally chosen, because
the introduction of a special treatment for cyclic values into the linear regression model
does not yield any additional advantage, quite the contrary only making the model more
complex.

After having fitted the model, and therefore the coefficients c0 . . . ck+1 are determined, ∆hj
can be predicted by the model (equation 5.1) using the sensor values sj,1 . . . sj,k. As hdev j
is inferred from the sensor values as well, the heading of the person is then finally given
by adding these together:

hskel j =
(
hskel j − hdev j

)
+ hdev j = ∆hj + hdev j

The next features that should be trained correspond to the hip joints. It seems reasonable to
do this with at least the one leg, where the device is placed inside the pocket, but the other
one should also be examined. The results of this will be shown later on in the evaluation
part of this thesis. For this purpose, the angles between the two thighs and the torso are
calculated.

The axis of rotation is set as the line through both hip joints. The geometric planes for the
thighs and the torso are described by the knee and the shoulder centre joint, respectively,
as well as the rotation axis. The angle αleg between the two planes, which will be the
resulting angle for the leg, is found using the normal vectors of both planes: n1 and n2.
As the direction of those normals depends on the order of the points from which they
are calculated, the order is chosen in such a way, that the normals face to the front of the
skeleton.

In 3D space, angles greater than π are only meaningful, if a reference direction to look
at the angle is given. This will be defined to be the direction of an imaginary observer,
who is farther away from the right hip than from the left. The information, whether the
angle is > π can now be determined by deciding whether the cross product of both plane
normals n1 × n2 is faced in the same direction as the vector which is pointing from the
left to the farther located right hip. This decision is always possible: The vector difference
between the two hips represents the rotation axis, which is never of zero length for a valid
skeleton. The cross product is by definition orthogonal to both plane normals and therefore
describes the intersection line between those planes, which in turn is also the rotation axis.
The information gained this way will be defined as αsgn, which is −1 if n1 × n2 points
towards the observer and 1 if pointing away. If both normal vectors are equal, αsgn is
defined to be 0. The angle between two planes is given by the inverse cosine of the dot
product of the two normals. The final angle in the interval of [0, 2π] is therefore:

αleg = π + αsgn arccos(n1 ·n2)

Using this method, all relevant angle features of the revolute joint model can be calculated
analogously. These features are also well suited for linear regression, as they are angular
values that map well to the also circular attitude features of the sensor input. Also, for

53

5. Preprocessing and Reconstruction

these features, it does not have to be accounted for any circular discontinuities, as the an-
gles are restricted to certain intervals given by the anatomy of the human skeleton. There-
fore, it is guaranteed that the angles are at most ∈ [0, π], or most likely even in a smaller
subset of this interval and can not suddenly wrap around these boundaries. This will be
further discussed later in the evaluation part.

5.4.3. Skeleton estimation from features

The transformation of the presented features back into a skeleton will not be exact, as
some information was omitted, that would be required for a precise reconstruction. This
is inevitable anyhow, because some components which are essential for the skeleton can
impossibly be inferred from the mobile phone sensors. Given these limitations, it still can
be estimated. The process to achieve this is laid out in the follows steps, which is basically
the inverse of the feature extraction:

1. Generate a normalized skeleton based on the stature

2. Apply all known features of the kinematic chain

3. Rotate according to the heading information

4. Translate coordinates to the persons location

A normalized skeleton is taken as a basis in the first step. For this purpose, a skeleton of an
average sized person, standing upright, was chosen. The pose is natural, having the arms
relaxedly hanging besides and a upright straight torso and head. The skeleton is refined
to be exactly numerical symmetrical with respect to the left and right body parts. It is
sitting right in the origin of the coordinate system, facing towards the z-axis, which can be
regarded as north in the local NED coordinate system. This defines the zero-state for the
kinematic chains, the orientation and the location. It would also be possible to feed this
initial state with the static information of stature and adjust bone lengths on a per person
basis.

Given this basic skeleton, all features that influence the pose, are applied. In this step it
is important to respect the order of the kinematic chains: Each rotation of a revolute joint
has to move not only the adjust bone, but the whole structure that is connected. A rotation
of the shoulder joint, for example, has to turn the whole arm with its three subsequent
bones and joints. The rule is to always turn those sub-trees that are further away from
the root joint. After having applied all known features, the skeleton is estimated as best
as possible from the information that was available. The base skeleton from the first step
ensures that even joints that were left untouched sit in a reasonable position. All joints
can now be transformed back into vectors in a cartesian coordinate system for further
processing.

Heading information can now be utilized to rotate the intermediate skeleton to the esti-
mated orientation. Therefore, not solely the phone heading information is taken. Instead
it is enriched by the heading delta, the result from the machine learning algorithm. Those
two features are combined to result in the estimated direction, the person is facing. As

54

5.4. Response feature extraction

the skeleton is still located at the origin of the coordinate system, it can be turned using a
rotation matrix that is applied to all joint vectors.

As a last step, the location can be applied by translating all vectors with a position offset.
As already mentioned, this will not be discussed further as it is not part of this work. In the
y-axis that is the up- and downward direction, however, the skeleton is translated in such
a way, that the bottommost joint is touching the ground plane. The assumption therefore
is, that the person is standing on the ground at any time. This way it can not be accounted
for jumping, but these are of very short duration anyhow.

As a result, the skeleton is reconstructed as far as possible using only a sensor data from
the mobile device and a trained linear regression model as input data. The stream of such
skeletons can now be visualized or even used like the Kinect skeleton stream to build
further applications on top of it.

55

5. Preprocessing and Reconstruction

56

6. Wearing position

To recapitulate, the work started with the assumption, that the mobile device is carried
inside a person’s trouser pocket. The method for reasoning about body features was then
outlined, beginning with the sensors, leading to the extraction of input features, up to the
point of fitting a linear regression model. Until now, the method is completely described,
but only valid for the case of having a single fixed and above all known position of the
device inside the pocket. As one would assume, people have different preferences and
mobile devices are worn in very different manners, which is elaborated in detail in the
following.

6.1. Wearing preferences

To study the preferences of people wearing their devices in the trouser pocket, a survey
was carried out. Persons at the university campus, as well as volunteers via an online sur-
vey form, were asked which pocket they use for carrying their phones and how exactly
the device is positioned in there. Another important question to be answered was, if they
alter these positions from time to time or if one specific orientation is chosen predomi-
nantly over the others. Of all asked people, 65 of them had a smartphone which they also
confirmed to carry in their pockets regularly. The results are shown in table 6.1. As no sig-
nificant correlation between display orientation and standing direction could be deduced
from the data, the table compares each of those independently with the pocket side.

Interestingly, no single person responded to change the pocket side. Several interviewees
even gave reasoning for this unaskedly: while they have other objects in one pocket, like
keys or similar, they only have a single free pocket to put the phone into. Another note-
worthy outcome of this poll was, that not a single respondent stated to wear his cellphone

Display orientation Standing direction
Side inwards outwards varying upright turned varying
Right pocket 22% (14) 22% (14) 5% (3) 29% (19) 9% (6) 9% (6)
Left pocket 32% (21) 11% (7) 8% (5) 23% (15) 12% (8) 15% (10)
Varying 0% (0) 0% (0) 2% (1) 0% (0) 0% (0) 2% (1)
Total 54% (35) 32% (21) 14% (9) 52% (34) 22% (14) 26% (17)

Table 6.1.: The results of the poll about wearing preferences. Back pockets are omitted, due
to no interviewed person using them.

57

6. Wearing position

in the back pocket of the trousers. In the 2005 study of locations of wearable or hand-
held devices in public spaces, still 6% of the interviewed users named to utilise their back
pockets [ICG05]. The difference here is, that in the aforementioned survey not only smart-
phones were taken into consideration, but all kinds of handheld devices or cell phones.
With smartphones, which feature a large display, the risk of breaking it is real, which may
be the reason why people nowadays avoid putting it there.

Positioning the device’s display to either face towards the body or the other way around
was decided deliberately by the majority of users. It is less likely that a user changes
this orientation frequently. Facing the display inside was justified by several people with
being afraid of accidentally breaking the glass cover of the display, for example by hitting
against the edge of a table. One person mentioned that this had already happened to him,
which caused him to switch it around and always wear it with the display facing inwards
since that time. Even so, it does not seem to be the case that one possibility is significantly
favoured over the other in general.

A similar pattern is apparent with the up- and downwards orientation of the device. While
there is a non-negligible fraction that does not pay attention on how they position their
phone, the larger part of people rather selected an orientation which is maintained. This
could be explained by habits that people became accustomed to when putting the device
into the pocket, as confirmed by several individuals.

In conclusion, while not based on a comparatively large data set in this survey, it appears
sufficient to allow the deduction of the following two key statements:

• Regarding all interviewed persons: the overwhelming majority uses their front
pockets, but no specific side or orientation emerges over the others.

• On a per person basis: the side of the pocket, where the phone is carried, appears
to be constant for nearly all users. Moreover, the orientation inside that particular
pocket is more likely to stay fixed as well, rather than to vary from time to time.

These results are very important, because they lead to the following conclusions: if the
preferences for a specific person are known a quite reliable basis is established to build
upon. This preference can be gained from the user by either by having the user set them
or by inferring them from available sensors. Further enhancement can be achieved by reg-
ularly validating those preferences with the current state in such a way that the model can
be switched if a change in the wearing position was noticed. Candidates of such automatic
classification methods are discussed next.

6.2. Classification

As seen, the side of the used pocket most probably does not change for a person. The user
needs to set his preferred side once and is done. What is left is to determine the orientation
of the display as well as the up and down direction. These are two independent problems,
which have two possible values each. The problem therefore reduces to two binary classi-
fiers. To find suitable input values for such classifiers, the following approaches have been

58

6.2. Classification

evaluated:

• Using both the primary and the font-facing cameras of the phone, try to infer the
orientation from different average luminance values of both video streams.

• Using the speaker and the microphone of the device, try to infer the orientation based
on reflection and damping effects of a short reference sound.

• Using the attitude information, based on the inertial sensors, repeatedly try to ex-
clude impossible or at least improbable states until only a single valid state is left.

All three of those approaches were evaluated and are discussed in the following, starting
with the luminance classification method.

6.2.1. Camera luminance

The basic idea behind this method is to leverage the fact that many trousers are made
of fabrics that are light-transmissive to a certain degree. Even thick jeans cloths are not
completely opaque. This can be exploited to measure the difference between the outwards
facing side, looking through the cloth and the inwards oriented side of the device that is
facing towards the body, where it is therefore darker. Many of the current phone devices
have two built-in cameras, one primary at the back cover and a front-facing one that can
be used for video calls, for instance.

To test if this idea could lead to a sufficiently accurate classification method, an application
was implemented which activates both cameras and reads their preview video stream.
The raw streams were used, where a single frame is encoded in the YCBCR colour space,
with the Y component containing the brightness information, CB representing the blue-
difference and CR the red-difference chroma values [ITU94]. The luminance of a pixel
could be directly read from the Y component. The average over every luma value of a
frame was then used to determine the overall luminance of the picture.

Several measurements were made with the mobile phone in the pocket. Trousers made of
different types of cloth, were used to determine the influence on the results. Each experi-
ment was repeated several times, changing the lighting conditions with testing it indoors
with artificial light and outdoors with daylight. Each combination of those parameters
was measured for both cases of the display orientation. The results were clear and without
ambiguity: this method is not suitable for any sort of binary classification. This is rooted
in several reasons, starting with those that are intrinsic to the very basic idea:

• Different lighting conditions have very different luminance thresholds, i.e. the point
off of which it can be classified as inwards or outwards facing.

• Different cloths are leading to different thresholds as well.

• At a very dark environment, the method has no chance at all to reason anything
about the orientation.

While these restrictions imply enough issues already, there are even more complications.
Both cameras are different in lens sizes and sensor surface area. This is explained as the

59

6. Wearing position

primary camera should be able to take higher quality photos, while the front-facing one
is intended for lower quality video calls. This leads to different behaviour of both video
streams: targeted at the same reference scene, both cameras produce different average
luminance values. While this fact alone could be compensated by a calibration factor, it
emerged that the luminance resolution is higher with the primary camera. Also, the time
to initialize the stream and finish the focusing and lighting adjustments behaves different
with both cameras. Even worse, cameras and all those discussed properties also vary
with different phone models, making them even less comparable and the method therefore
harder to generalise.

Ultimately, one final reason renders the method useless: the cameras have an adaptive
mechanism to adjust the luminance amplification on the amount of light that is exposed to
it. This amplification is the CMOS counterpart to the iris of a classical camera, which is also
adapted to the light quantity, like described in [Nis96]. While this mechanism is desirable
for taking photos or recording videos, it is counterproductive in this context. When the
amount of light increases, this adaptive technique reduces the amplification slightly and
is therefore darkening the image, while lightening up the image when it gets darker. This
effectively narrows down the luminance resolution further. This behaviour can not be
turned off, as it is either implemented in a core driver component or even integrated into
hardware components.

6.2.2. Acoustic patterns

Another possible approach for classification of the devices orientation inside the pocket
could be the exploitation of acoustic effects. The idea behind this is that microphone and
speaker of the phone are placed in different spots when the orientation is changed. In
addition, the pocket is vertically asymmetric, as it is open to the upside. When a particular
sound is emitted by the speaker, it will be reflected and damped differently depending on
the orientation, which in turn could be measured by capturing the sound again, using of
the microphone.

To validate the suitability of this method, another application was created that plays a short
100 ms long beep sound, while starting a 300 ms long recording with the microphone,
about 100 ms before the sound starts. As a reference sound, a triangle wave was used,
with a base frequency of about 1,7 kHz and 4 odd harmonics to form the triangle shape.
This way, the effect could be analysed for multiple frequencies. Again, tests were made
with varying the orientation inside the pocket while playing a series of these sounds and
recording them.

The experiments show that microphones of current mobile phones are just not accurate
enough to capture the sound in the quality needed to allow for analyses of this kind. Af-
ter all, those microphones are only optimized for capturing speech and being as com-
pact as possible as well as being inexpensive. The frequency spectra of the recordings are
strongly deformed, even when holding the device freely in mid-air for reference. Figure
6.1 shows the spectra of the reference sound and the recording, with the device lying on
the ground.

60

6.2. Classification

0 5000 10000 15000 20000

−
10

0
−

60
−

20

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

0 5000 10000 15000 20000

−
80

−
50

−
20

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Figure 6.1.: Frequency spectra of the original sound and its recording.

To study the similarity of different spectra, pairs of all possible 2-combinations were built
from the set of test recordings. For each pair, the sum of mean squared differences of the
discrete spectral components was calculated. The spectra turned out to often times be
more similar between two different orientations, as they were between two measurements
in the same orientation. This can be seen in the detailed comparison listing in appendix
8. With such absence of any correlation between the orientation and possible patterns in
the spectra, no meaningful classification can be found. Apart from that, even if such a
classification was found, the method also had the following intrinsic drawbacks:

• Loud environment noises disturb the sound, making it impossible to apply this ap-
proach under such conditions.

• If the device is set to silent mode, the operating system will refuse to play the sound,
which also renders this method useless in these cases.

• Using different trousers with wider or tighter pockets as well as thinner or thicker
fabrics, the recorded sound has different spectra as well. Trying to account for all
these diversities makes it even harder to find a common denominator for each orien-
tation class.

6.2.3. Attitude heuristics

After having seen that other sensors of the mobile device are not well suited to reason
about the phones orientation inside the pocket, the set of inertial sensors was left to be
examined. The idea is to find heuristics about phone attitudes that are unlikely to hap-
pen, if the phone is being carried in certain positions. The primary disadvantage with this
approach is that there is no guarantee to detect the right pocket orientation state immedi-
ately. The reason for this is, that different states lie in the same equivalence class of attitude
measurements for certain body postures.

This means, that if for example the person was standing, there is no way to determine

61

6. Wearing position

whether the phones display is faced inwards or outwards just from the attitude of the
phone. In the first case, if it was oriented away from the body, it looks approximately in
the same direction as the user. In the second case, with the display faced inwards and the
user standing in the opposite direction, the phones attitude is very similar. This makes it
improbable to find a good classifier to separate those two cases. When sitting, however,
one of those possibilities can be excluded, as it is impossible to have the phone in the front
pocket facing outwards, while at the same time the sensor attitude describing the display
is facing towards the ground plane. The same is true for the other pocket orientation
parameter: with the person standing, it can be determined whether the phone is placed
upright or upside down, as one of both would be only possible if the person was doing a
handstand, which is improbable, or the phone was currently not inside the pocket. Using
these domain specific contradictions, it leads to the heuristic approach described in the
following.

For this method, the attitude of the phone is constantly observed. Recalling the character-
istic vectors of the heading calculation in section 5.2.1, the projected vectors ~v′ and ~w′ are
now utilised to detect those improbable positions. If one of those is nearing zero length,
the direction the original vector ~v or ~w is given penalty points. The penalty points are
weighted with how close the projected vector is to zero, i.e. the inverse of the interval [0, 1]
the projected vector length lies in. All those points are summed up, i.e. integrated over
time. The direction with the least of such penalty points is then taken as the more probable
one. ~w is thus used for assessing the state of the phone being carried upright or upside
down, ~v is used to determine the display facing direction, respectively.

One problem remains, however: the method is very slow to react to position changes, if it
was running for a relatively long time already. In this case, the carrying position has been
well established and the sum of penalty points grew large. If the user is now taking the
phone out of the pocket and after a short while puts it another way back in, it would take
a very long time for the method to actually react to this change. The sum of penalty points
of the new orientation has to catch up and overtake the established one first. To account
for this, older penalty points are devalued when penalty points for the opposing side are
generated.

Finding the right parameters for weighting the penalty points as well as the exact function
for devaluation of opposing points are not easy to find and depend on the users activity
properties. Such properties include the likelihood of the user changing positions regularly
as well as the typical duration of carrying the phone in relation to the time it is outside
the pocket. Nonetheless, this method proved to be the most reliable of all examined ap-
proaches in this work to determine the orientation of the device inside the users pocket.
It takes an initialisation phase, but after this has finished, it finally stabilises and provides
sufficiently correct results for practical purposes.

As this orientation state is likely to stay the same per user (see survey results above), it
is fair to assume that on a subsequent start of the mobile application the orientation will
not have changed. Therefore it is stored and taken as the initial state for future executions
of this method. This does not mean that the orientation could not be changed then. The
method is just initialised with a reasonable guess of the most probable state for the user,
but moves on like previously described.

62

6.3. Model selection

While this method is probably not the most advanced one, the idea could be improved
with applying techniques of reinforcement learning, which will not be discussed in this
work anymore, however. Furthermore, other approaches were shown in related work,
which could also be used in conjunction with this. Kunze et al. [KLPB09], for example,
have shown that the pocket wearing position can be deduced with the help of both ac-
celerometer and location data when the person is walking.

6.3. Model selection

After having seen different approaches to classify those different wearing positions of the
device, some of which are not very promising and one that is better suited, the results
somehow have to be incorporated into the overall method. There are basically two meth-
ods to use this information.

As there are two possible disjunct states for each the pocket side, display orientation and
standing direction, there are 8 distinct states overall. The first possibility would thus be to
train eight models for each state respectively. Each time the state is determined, it would
be switched to the corresponding regression model. This approach has the drawback of
implying the need for training of each of those different models. The quality and accu-
racy of each such model could be varying, which makes it complex to evaluate the overall
method. On the other hand, those independent models could account for small peculiari-
ties between the different states. The possible benefit of these detailed effects would then
be improvements of the overall accuracy.

A second solution would be to train and use just one single regression model that is valid
for all states. Therefore, a default state is defined, e.g. the phone being located in the right
pocket, standing upright, with the display facing outwards. Any other state is mapped
onto this default one by mirroring the sides or rotating the phone by 180◦ around the
respective axes, if required.

Measurements have shown, that different models for each state are strongly similar, ex-
cept for all critical dimensions being shifted or inverted. Models for the right and left side,
for example, are nearly identical and yield valid results, when the left pocket model is
supplied with data of right pocket measurements that were mirrored and vice versa. The
same could be discovered with the other two state parameters. The models were inter-
changeable, when applying the corresponding rotation to the phone attitude. This can be
explained by the symmetry of the contour of current smartphone devices: when turned
around in the pocket, the devices attitude behaves identically for all body postures, except
for being rotated by exactly a half turn around a known axis.

It was therefore decided for the second approach, using only a single model. This also has
the advantage of concentrating all training data sets on this model. This, in turn, assures
that there are enough example values to get a well fitted model from the machine learning
process. The same model can also generalise better over different persons then.

63

6. Wearing position

64

7. Evaluation

Several intermediate evaluation results have been shown in the previous chapter, as they
were necessary to develop the method in the first place. Therefore, the results of the overall
method are left to be shown in the following. First, the implementation that was developed
according to the presented approach is described shortly. Next, the statistical significance
of the features for the various response variables is discussed, before presenting the quality
of the overall results.

7.1. Implementation

The software implementation of the presented approach, called ‘BodyOrientation’, was
written with a clean architecture, dividing the computing algorithms from the visualizing
user interface modules. It is more than a mere prototype or proof-of-concept. The code,
or parts of it, can be used for further research projects, as it is modularly structured and
well commented. It was developed in the c# programming language and is using the .NET
framework as a runtime environment. The source code was released and is available on
the GitHub platform [Dau12a].

The software is able to receive mobile phone sensor values over a TCP connection with
the use of a specially developed protocol and has an interface to the Kinect SDK, which
enables it to gather skeleton data from a Kinect depth sensor. A recorder functionality was
implemented that allows for storing the incoming data with the use of an own serialisation
method. This played an important role in the development of the method, as it allowed to
collect raw test data which could be saved and replayed over and over again to test and
compare different refinement approaches for the method. The file format was designed to
allow both real-time replay with the possibility to rewind and jump forward as well as the
immediate processing. In the latter case, visualisations are disabled and the recording is
not slowed down to match the speed with which it was recorded. This allows for faster
processing of the recording into a stream of features for further evaluation, which can then
happen as fast as the computational power allows.

Exporting functions to the Weka data mining software as well as to the R statistical lan-
guage framework allowed for early tests. An interface to the R framework was imple-
mented later on, to enable the application to send the preprocessed training data set to the
model fitting algorithm and directly estimate response features with the fitted coefficients
in the program.

User interface components were developed specially for this application to allow the visu-
alisation of all raw data and processed features in diagrams. Furthermore, there are view-

65

7. Evaluation

ports where the mobile device’s current attitude is rendered as well as both the measured
and the estimated skeletons are shown. A screenshot of the application’s user interface is
shown in appendix 8.

It is accompanied by a mobile application, also written in c# and running on the Windows
Phone mobile operating system. Its purpose is to collect all sensor values and the sensor
fusion results and send them over an established network connection to the PC applica-
tion. It was published to the Windows Phone Marketplace and can be downloaded for free
[Dau12b]. Appendix 8 shows two screenshots of the application.

Such programs can also be written for any other mobile operating system. For this pur-
pose, the protocol was held simple: a set of predefined sensor values has to be retrieved
from the system and sent over a TCP socket, which is established with the PC by connect-
ing to the correct port and receiving a constant magic number as a confirmation. After
the connection is open, a packet has to be sent about every 50 ms, which holds the sensor
values. Such a packet is a byte array containing the number of values as a 4 byte integer,
followed by the sensor values as 4 byte floating point numbers, each in network byte order
(big-endian). A description of the expected sensor values and their order as well as code
examples can be found on [Dau12c].

7.2. Model analysis

The presented method could be evaluated with the help of this implementation. Having
collected a training set, which was assembled from several recordings of 6 different test
persons under changing circumstances, a basis for verifying different models was laid
out. An analysis of different models shall be given in the following, where metrics for
determining the quality of models are discussed as well as methods for selecting a suitable
hypothesis space are shown. The reasons for the selection of the final models are shown,
before discussing techniques for validation and their results. It all starts with having a
look at the assumptions about linear regression models, however, which must be fulfilled
first of all.

7.2.1. Residual metrics

In a fitted model, suitable values were already chosen for the coefficients wi. As described
previously, the jth item

(
yj , (xj,1 · · ·xj,i)>

)
of the training data set and its corresponding

residual εj have the following relation:

yj =

n∑
i=1

wixj,i + εj

where yj is the response value, also called fitted value in the following, and xj,i are the i re-
gressors, i.e. the mobile device features. The residuals are therefore given by the difference
between the measured yj and the estimated response value ŷj :

66

7.2. Model analysis

εj = yj −
n∑
i=1

wixj,i = yj − ŷj

The following four assumptions on the residuals have to be verified to assure that the
hypothesis space for the linear regression was chosen correctly [Kle07]:

(I) The residuals are independent. If the still residuals contain a systematic trend, it
would indicate that the model was not adequate.

(II) All residuals are normally distributed. This assumption was already made when
the L2 loss function was chosen to fit the model.

(III) All residuals have the same variance. The set of residuals is also called homoscedastic
if this assumption is true.

(IV) All residuals have zero mean. This is equivalent to the statement that no outlier in
the training data may significantly influence the fitted coefficients.

The first assumption is equal to the requirement of the response variables being indepen-
dent. This in turn is subject to the design of the collection process of the training data. This
assumption can be seen as confirmed in the context of this work, as the measurements
were and will not be biased on the basis of previous measurements.

Furthermore, note that there is an important difference in the following two error types:
while the statistical error of a measurement is the difference between the measured value
from a true and unobservable value, the residual of the sample is its deviation from the
estimated response of the fitted model. Regardless of the variances of the statistical errors,
which may very well be equal over several measurements, as for example the properties
of the presented inertial sensors showed, the variances of the residuals may differ for dif-
ferent items in the training data set.

Therefore, the residuals are adjusted by estimating their variances and normalising them.
It can be shown [Lar08] that the these so called standardised residuals sj are then given by
multiplying the corresponding residuals εj with the following factor:

sj = εj
1√

1− hjj

where the leverages hjj are the diagonal elements of the so called hat matrix H . It is called
that way because it maps the observed values to the fitted value, i.e. ŷj = Hyj which ‘puts
a hat on yj ’. It is given by:

H =


h00 h01 · · · h0N
h10 h11 · · · h1N

...
...

. . .
...

hN0 hN1 · · · hNN


= X

(
X>Σ−1X

)−1
X>Σ−1

67

7. Evaluation

with Σ being the covariance matrix of errors, which can be the identity matrix in case of
uncorrelated errors. X denotes the so called design matrix, which consists of all regressor
values. Recalling xj,0 := 1 ∀j ∈ {1, 2, ..., N} it is given by:

X =


1 x0,1 x0,2 · · · x0,n
1 x1,1 x1,2 · · · x1,n
...

...
...

. . .
...

1 xN,1 xN,2 · · · xN,n


Given these metrics, the concrete models can be verified in the following.

7.2.2. Residual analysis

The final model for the heading delta, i.e. the difference between the shoulder orientation
and the phone heading as described in section 5.4.2, will be taken as an exemplary model
to analyse in the following. Which features are involved in this model and why they were
selected will be shown in a later section.

Assumption (I) has already been discussed above. To verify assumptions (II) to (IV), sev-
eral special scatterplots are typically used, which are shown for this model in figure 7.1.
From the large training dataset that was collected for this work, 3500 items were randomly
selected for these plots. The shown fitted values represent the response values, which are
the heading delta values.

In the top left corner of the figure, the residuals are plotted against their fitted values.
If assumptions (III) and (IV) are satisfied, the points should be evenly distributed around
zero, with the spread being about the same throughout the plot. The red line should ideally
lie straight on the dotted line, which it approximately does. It can be seen that there are
two ‘clusters’ to the right and left, which result from the samples where the persons were
sitting or standing respectively, as the heading delta values largely differ between these
two states. Values in the middle of these two clusters are caused by the transitions between
these two states. They are more sparse because there are simply more measured samples
from persons staying in those states rather than transitioning between them, which has a
much shorter duration. However, there is no global upward or downward trend visible,
as well as no other kind of systematic trend, such as a curvilinear bend of the whole point
cloud.

To examine the distribution of the residuals, which should be normal according to assump-
tion (II), a normal Q-Q plot is used. In statistics, this is a graphical method for comparing
probability distributions and examine them with respect to equality. Therefore, the quan-
tiles of a theoretical ideal normal distribution is plotted against the quantiles of the set of
residuals. The more similar these two distributions are, the nearer the points will lie on the
identity line. In Q-Q plot in figure 7.1 shows a very linear relationship in the middle of the
graph which is slightly skewed to both ends. This is because the outliers which are more
sparsely available are not perfectly describing a normal distribution. Overall however, the

68

7.2. Model analysis

0.2 0.4 0.6 0.8 1.0

−
0.

8
−

0.
2

0.
2

0.
6

Fitted values

R
es

id
ua

ls

●
●●●●●

●
●
●

●
●
●
●●
●●

●●

●
●
●

●●●●
●●

●

●●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●●●

●
●

●●
●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●
●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●●
●●●●
●●●●●●●●●

●

●●●
●
●

●●
●
●●
●

●●●

●
●
●
●
●
●●
●
●●
●●●●●●●●●●●
●
●●
●
●
●●

●
●
●
●●

●●●
●●●●●●●●●●●

●●
●●

●
●
●
●
●
●

●
●
●
●
●●
●●●●●●●●●●●●●●

●●●●
●●
●●
●
●
●

●
●●

●
●
●●●●●

●●●
●●●●●●●

●●
●

●●●●●●●● ●●●●
●●●●

●●●●
●●●

●●●
●●

●
●
●
●

●●
●●●●

●
●

●
●

●
●

●
● ●

●●●

●
●

●●
●

●●

●

●

●

●
●

●

●
●●●●
●

●●

●●
●●

●

●●
●●

●●
●

●
●●

●●
●

●
●●●●

●●●●●●
●●●●●●●

●
●

●●●●
●●
●●●●

●●●
●●●●●●●

●●●●●●
●●

●●●
●

●
●
●●

●●
●●
●

●●
●●

●●
●●●

●
●●●●●●

●●●●●●
●●●●●●

●
●
●
●
●
●

●
●
●
●
●
●●
●
●
●
●●●
●●●●●●●●

●●●●●●●
●●●●

●●
●●
●●

●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●
●

●●
●●
●●●●

●●●●
●

●●●●●●●●●●
●●●●●

●●●●
●●●●●
●

●●●●●●

●

●

●
●
●●●●●●●●●●●

●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●

●
●

●
●
●●

●
●●●●●

●●●●

●●●
●

●●
●

●
●
●
●
●

●
●
●●
●
●
●
●

●●●●●●
●●●●●
●

●●●●
●●

●●●
●●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●

●

●

●

●● ●
●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●●●●

●●●
●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●
●
●
●
●
●
●
●
●
●
●●●●●●
●●●●

●●
●●
●●
●
●
●●
●●●

●
●
●●

●
●
●
●
●
●●
●
●●●●●●●●●●●●●●●

●●
●
●
●

●●●
●●

●●●●●●●
●

●
●●

●●

●●
●

●
●●

●
●

●●
●
●●

●●
●●
●●

●●
●

●●
●
●●●●
●
●

●
●●
●●

●

●

●● ●●
●●

●●●
●
●

●
●

●
●
●

●●
●●●

●●●●●●●
●
●●●

●●●●
●●●
●●

●
●

●
●●
●●●
●●
●●●●●●●●●●●●●●●●

●●●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●●●●●●●●●●●
●●
●
●●
●●
●
●

●●
●●
●●

●●
●●

●●
●●●
●●●●
●
●●●
●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●
●

●●●●
●●●●
●●●●●
●●●●
●●●●
●●
●●

●
●●

●

●●●●●●●
●●●●●

●
●
●●●●●

●●●●●
●●●

●
●●●●●

●●
●●
●●●●●
●●●
●●
●●●●

●
●

●●●●●
● ●

●●
●●●●●●●●
●●

●
●●●
●●●

●
●

●●
●●●● ●●●●●●

●
●●●●
●
●●
●
●

●●
●

●
●

●

●●●
●

●
●●●●●●●●●●
●
●●
●●

●
●

●●●●●●

●
●
●●

●
●●
●
●●●●
●●●●●●

●

●●●
●●●

●

●●
●
●●
●
●
●
●●

●●●●●
●

●
●

●●●●●
●

●●●
●●●●
●●

●●
●●●
●

●●

●●●●●●
●
●

●
●
●
●●
●
●
●●
●●
●●
●●

●●●
●●●●●

●●●
●●●●●●●●●
●●

●●
●●

●
●●●●

●●●●
●

●

●

●

●
●●●●●●●●●●●●

●●●●●●●
●●●●●

●●●
●●●●

●●
●●

●
●

●
●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●
●

●
●
●
●

●
●
●●

●●●●
●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●
●●
●
●●
●●

●●
●●
●●
●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●

●●
●
●

●

●

●
●●● ●●

●●●●●●●●●●●●
●●

●●
●●●●

●
●

●●●●●●
●●●
●●●●●●●●
●●●●●●●●●

●
●●

●●●●●●
●●●●●●
●●

●●
●●●●●●●●

●●●●
●
●
●
●
●●

●●
●●●
●●●●●
●●●●

●●
●

●●●●●
●

●●●●●●●●

●●●
●●
●●●●

●●●
●

●●
●●●

●
●●●●
●
●●●●●●●
●●
●

●
●

●●
●●●●●

●
●●●

●●●●●●●●●●●●
●●●●

●●●●
●●●●

●●●●●●●●
●●
●●
●●
●●●●
●●
●●●
●●

●●
●●●●●

●
●●●●●
●
●
●●●●
●●●●●●
●●●

●●●
●

●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●
●●●●●●

●●●●●●
●
●●●●
●●●●●●●
●●●●●
●●●
●●●
●
●●
●
●
●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●
●●●●●●●

●●●
●
●

●
●
●
●
●
●

●
●●

●
●
●
●
●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●
●

●
●●●●

●●●●●
●
●
●●●●●●●
●●
●●
●●●●●

●
●●●●

●●●
●

●●●●
●●
●

●●●●
●

●●
●●

●
●

●●●
●●●
●● ●

●●
●
●

●●
●●

●
●●●
●●●
●●

●
●

●
●●●●

●●● ●
●

●
●●●●●
●●●●

●
●●
●
●●

●
●

●
●●●●●●●

● ●
●

●●●●●

●●●
●●●●●●●
●●

●
●

●●●●●
●●●
●
●●

● ●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●

●
●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●

●
●

●●●●●
●●●●

●
●●●

●
●●
●●●●●●●
●●●●●
●
●●●
●●●●

●
●●●●●●●●●

●●
●●●
●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●
●●

●●
●●●●●●

●●●
●●
●●

●
●●●●●

●
●●
●●●●●●●●●●
●

●●●●
●●●

●●●●●●
●
●●●●●

●●●●●●●●
●●
●●
●

●●●●
●●

●
●

●
●
●●

●
●●

●●
●●

●●
●●●

●
●●●

●

●●●●
●●●●●●●●●●●●●●
●●●●

●
●
●
●
●
●

●●●●
●
●
●
●

●●●●
●●●●●●●●●
●●●●●●●
●●●●●

●

●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●

●

●
● ●

●
●

●

●●
●●●●●
●●

●

●●●●●● ● ●●●●●●

●

●●●●
●●
●●●●●●●●●

●●●
●●

●●●
●

●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●●
●●
●
●
●

●
●

●

●●
●
●
●
●●

●●
●●
●●●●

●●●
●
●●

●
●●●
●●●●●●●●●●●
●
●●

●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●
●●●

●●●
●●●
●
●●●

●
●●●●
●●●●

●●
●●●●●●●●
●●●●●●

●●●●
●●

●●
●●●●●●●●●

●●●●●
●
●
●
●
●●

●●●●●●●●
●●●●
●●●●

●●
●●
●●●●

●
●●●●
●●●●

●
●

●
●●●●

●

●
●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●● ● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●

●

●
●●
●●●●●●●●●●●●●●●●●●●

●
●

●
●
●

●
●

●●●●
●
●
●

●
●
●●●●●●●●●●●●●●●●
●●●
●●
●
●
●
●

●
●
●
●
●●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●●
●●●●
●●●●●●●●●●●●

●●●
●

●
●
●
●●
●

●
●

●
●

●
●
●
●

●●●
●

●
●
●
●●●
●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●

Residuals vs Fitted

181721

●

●●●●●

●
●
●

●
●

●
●●

●●

●●

●
●

●

●●●●
●●

●

●●
●●●●

●●
●

●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●

●
●●

●●●●● ●
●

●●
●

●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●●●●
●●●

●●●●●●●●●●●●●
●●●●

●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●●
●

●●●
●●●●●●●●●

●

●●● ●
●

●●
●

●●
●

●●●

●
●

●
●

●
●●

●
●●●●●●●●●●●●●

●
●●

●
●

●●

●
●

●
●●

●
●●

●●●●●●●
●●●●
●●

●●

●
●

●
●

●
●

●
●

●
●

●●
●●●●●●●●●●●●●●

●●●●●●
●

●●
●

●

●
●●

●
●

●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●
●●●

●
●●●

●●●
●●

●
●

●
●

●●
●●●

●
●

●
●

●
●

●
●

●●

●●●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●●●●

●
●●

●●
●●

●

●●
●●

●●
●

●

●●
●●

●

●
●●●●

●●●
●●●●●●●●●●

●
●

●●●●
●●

●●●●
●●●

●●●●●●●
●●●●●●
●●

● ●●
●

●

●
●●●●●
●●

●●
●●●●●

●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●● ● ●

●
●●●●

●
●●●●●●●●●●●●

●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●●
●●●●●●●●●●●●●●●

●●●●

●●●
● ●●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●
●●●●

●●
●●●

●●● ●●
●●●

●
●

●●●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●

●

●

●
●

●●●●●●
●●

●●●
●●●●

●
●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●

●
●

●
●

●
●

●●
●

●●●●●
●●●●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●●
●

●
●

●

●●●●●●
●●●●●

●
●●●●●●●●●●●●

●

●

●

●●●
●●●●

●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●

●●●●

●●
● ●●●

●●●●

●●●
●

● ●●
●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●●●●●

●●●●
●●

●●
●●

●
●

●●
●●●

●
●

●●

●
●

●
●

●
● ●●
●●●●●●●●●●●●●● ●●●

●
●

●
●●●

●●
●●●●●●●

●
●

●●
●●

●●
●

●

●●
●

●
●●

●
●●

●●
●●

●●

●
●

●
●

●
●

●●●●●
●

●
●

●
●●

●

●

●●●
●●●

●●
●

●
●

●
●

●
●

●
●●

●●●

●●●●●●●
●

●●●

●●
●●

●●●
● ●●

●

●
●

●●●●
●●●

●
●●●●●

●●●●●●●●●
●●●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●●

●●●●●●●●●●
●●

●● ● ●●
●

●
●

● ●
● ●

● ● ● ●

● ●●●●
●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●
●

●●●●

●●●●●
●●●●
●●●●

●●●●

●
● ●

●

●●●●●●●
●●●●●

●
●

●●●●●●●●●●
●●●

●
●●●●

●

●●
●●

●●●●●
●●●

●●● ●
●●

●
●

●
●●●●

●
●

●●
● ●●●●●●●

● ● ●
●●●●●●●

●

●
●

●●●●●●●●●●
●

●●●●
●

●
●

●
●

●●
●

●
●

●

●● ●●
●

●●●●
●●●●● ●●

● ●
●●

●
●

●●●●●●

●
●

●●
●

●●
●

●●●●

●●●●●●
●

●●●
●●

●
●

●
●

●

●●
●

●
●

●●

●●●●●●
●

●
●●●●●

●
●●●

●●●●
●●

●●
●●●●
●●

●●●●●●
●

●
●

●
●

●●
●

●
●●●●

●●
●●

●●●
●●●●●

●●●
●●●●●●●●●

●●
●●

●●
●

●●
●●

●●●●
●

●

●

●

●
●●●●●

●●
●●●

●●●●●
●●●●●●

●●●●
●●●

●●●●●
●● ●

●

●
●

●
●

● ●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●

●
●

●

●
●

●
●

●
●

●●

●●
●●

●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●

●
●●

● ●
● ●

●●
●●

●●● ●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●
●

●

●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●
●●●

●●●●●
●●●●●●

●●●●●●
●

●●●●●●●●
●●●●●●

●●
●●

●●●●●●●●
●●●●

●
●

●
●

●●
●

●

●●●
●●

●●●
●●●● ● ●

●
●●●●●

●
●●●●

●●●
●

●●●
●●

●●●●
●●●

●

●●
●●●

●
●●●●

●
●●●●●●●
●●●

●
●

●●●●●●
●

●
●●●●●●●●●●●●●●●
●●

●
● ● ●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●

●●
●●

●
●●●●

●
●●●●●

●
●

●●●●
●●●●●●●●●

●●●
●

●●●●●●
●

●●●
●●●●●
●●●●●

●●●●●●●●●●●
●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●● ●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●●
●●●●●

●●●
●

●
●

●
●●

●
●

●
●●

●●●●●
●●●●●●●●

●●●●●●●●● ●●●● ●

●
●●

●●●●●●●●●●●●●
●●●●●●●●●●
●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●●●●●●●●
●●●●●●●● ●●●●●●●●

●●●●●●●●●●●● ●●●●●●●
●●●●
●●●●
●●●●●●●●

●● ●
●

●●●●

●●●●●
●

●
●●●●●●●●●●●

●
●

●●●
●

●●●●
●●●

●
●

●●●
●●

●
●●●●●

●●
● ●

●
●

●
●

●
●●●

●●●
●●

●
●

●●
●●

●
●●●●●●●●

●
●

●
●●●●

●●●●
●

●
●●●●●

● ●●●●
●●●

●●
●

●
●

●●●●●●●
●●

●
●●●●●

●●●●●●●●●●●●
●

●
●●●●●

●●●
●

●●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●●●
●

●
●●●●●●●●●●

●
●

●●●●●●●●●
●●●●●●●●●●

●●●●●
● ●●

●
●●●●●

●
●●●

●
●●●

●
●●

●●●●●●●
●●●●●
●

●●●
● ●

● ●
●

●●●●●●●●●
●●

●
●●

●●●●●
●●●●●●●●

●
● ●

●●●
●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●●●
●●

●●●●●●●●●
●●

●●
●

●●●●●
●

●●
●●●●●●●●●●

●
●●●●●●●
●●●●●●

●
●●●

●●
●●● ●●●●● ●● ●●

●
●●●●

●●
●

●

●
●

●●●●●●●
●●●●●●●●●● ●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●●●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●
●●●●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●●●●
●●●●●●●●●

●●●●●●●●
●●●●●

● ●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●

●

●●
●

●
●

●●
●●●●●

●
●

●

●●●●●●●●●●●●●

●

●●
●

●
●●●●●●●●●●

●●●●
●● ●
● ● ●

●●●●●●●●●●
●●●●●● ●●●●

●
●●●●●

●●
●●●

●
●

●
●

●

●●
●

●
●

●
●

●
● ●●

●●●●
●●●

●
●●

●
●● ●●●●●●
●●●●●

●
●

●●
●●●●●●●

●●●●●
●

●
●

●●●●●●●●●●●●
●●● ●●●●●●●

●●●
●

●●●●
●●●●

●
●

●●●●●●●●
●●●●●●

●●●●
● ●

●●
●●●●●●●

●●●●●●●
●

●
●

●
●●

●●●●●●●
●●●
●

●
●●
●● ●●

● ●●●●●
●

●●●●
●●●●

●
●

●
●●●●

●

●

●
●●●
●●

●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●

●
●●●

●

●

●

●
●●●●●
●●
●●●

●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●
●

●●●
●

●
●

●

●
●

●●●●●●●●●●●●●●●●
●●●

●●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●
●●●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●●●
●

●
●

●
●●●

●
●

●●●●●●●●●●●●●●●
●●

●●
●●● ●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●

−2 0 2

−
4

−
2

0
2

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

1817119

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●●
●

●
●

●

●
●

●
●

●
●●
●●

●●

●

●

●

●●●●
●

●

●

●

●

●●
●●

●

●

●

●●●
●●●●●

●●
●●●●●●

●●●●●●●●●●●●●●●●●
●●

●●●

●

●

●

●

●●●●
●

●

●

●●

●

●

●
●●

●●●●●●●●●●●●●●
●●●●

●●●●●●●
●

●

●

●
●

●

●
●●●

●
●

●

●
●●

●
●
●

●●●●●
●

●●
●
●
●
●●●●
●●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●
●
●●
●
●●●●
●●●●●

●

●●

●

●

●

●●

●●●

●

●
●●

●

●

●

●

●

●
●
●
●
●●●
●●●●●●
●●
●
●
●
●

●

●

●

●

●
●

●

●●

●
●
●
●
●
●●●●
●
●●
●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●●
●●
●●●●●●●●

●
●
●
●●

●
●
●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●
●

●
●●

●
●

●

●
●

●

●
●●●●●●● ●

●●●

●●
●

●

●●
●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●
● ●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●

●●

●●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●
●
●
●

●●●
●
●
●●

●●●
●

●
●

●

●

●
●

●
●

●

●●
●●●
●●
●

●●

●
●●●●

●●●
●●●

●
●

●

●●

●

●

●
●●●●●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●●●●

●●●●●
●●●●●●●●

●●●●●

●●●●

●
●
●

●

●

●
●
●

●

●
●
●
●●

●

●
●

●
●

●
●●●●

●
●
●

●
●
●●

●
●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●

●●
●●

●●
●●
●●

●
●●
●
●
●

●
●

●
●
●
●
●

●

●
●
●
●

●●●●●●
●●
●●
●●
●●●●
●●●●●●●●●

●●●●●
●
●

●

●

●
●●●

●
●

●
●●●●●●●●●●●●●

●●●●●●●
●

●

●●
●

●●

●

●

●
●●
●

●●
●
●
●

●

●
●

●
●
●
●

●

●

●

●
●●
●
●
●

●

●

●
●
●●●

●●●
●

●
●
●

●

●
●

●
●●

●●●

●

●

●

●
●●●●●●

●●
●●●●●●●●

●●●●

●●●
●●●
●●

●●●●●
●
●

●

●

●
●
●

●●
●●

●
●●●●●●

●●●●
●

●
●

●

●
●
●
●

●

●●●●●

●●
●●

●
●
●
●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●
●

●●●●
●

●

●

●●
●
●
●

●●
●

●●
●

●

●

●

●
●●

●
●

●
●

●●
●●●

●●●
●

●
●

●●
●

●
●

●
●
●●●●●●●

●

●

●
●

●
●

●
●
●
●●●●●●●

●

●

●

●
●

●
●

●

●●●
●
●

●●●●●●●
●

●
●
●
●
●

●

●●

●

●
●

●

●●●

●●
●
●

●
●●
●

●

●●

●

●●

●●●
●●●●●●●●●●

●●

●●●●●

●●●●●●●●
●●
●
●
●
●

●

●

●

●

●

●
●
●
●●
●●●
●●●●●●●

●
●●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●
●

●

●
●
●
●●●●

●

●●

●

●

●

●
●●

●●

●
●●

●
●●●

●

●

●●

●●

●
●

●
●

●
●

●

●

●●

●

●
●

●
●
●●
●●

●
●

●

●
●

●

●●●
●●

●

●

●
●
●
●

●

●
●
● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●
●●

●
●●
●●

●

●●●

●

●

●●

●

●
●
●

●

●

●●

●●

●●
●

●●

●

●

●●
●●●

●●●●
●
●●

●●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●●
●●●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●

●
●
●
●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●
●
●

●
●●
●●
●●
●●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●
●●

●
●
●
●

●

●●
●

●
●
●
●

●

●

●

●

●
●●●

●
●

●

●
●

●
●

●

●

●

●
●●
●
●
●●●
●●

●●

●
●

●●●●

●

●
●

●●

●

●●
●●

●●
●

●
●
●
●

●●

●

●

●
●●●●

●

●

●
●

●

●●

●●●
●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●●●●
●

●
●●
●

●●

●●
●
●

●

●

●●

●

●
●

●

●

●
●

●●

●●

●

●●●●

●
●
●●
●

●
●●

●

●●●

●

●
●●

●●
●

●

●

●●

●
●●

●

●
●●●

●
●●●

●●

●

●
●
●
●
●

●

●

●
●

●

●
●
●

●

●
●●

●●
●●

●●

●
●

●
●
●
●

●

●

●●●

●
●
●●

●●
●●
●●
●●

●
●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●

●●●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●
●

●

●
●●
●●●
●

●

●

●
●

●●

●
●

●
●

●
●●●●

●

●

●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●
●

●

●

●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●
●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●●●

●●●●●●●●●●●●●●●●

●●●
●●●●●
●
●●

●

●

●
●

●

●

●

●●
●●
●
●
●

●

●
●
●
●
●
●●●●●
●●●
●●
●

●●●●
●

●
●●

●●
●
●
●
●●

●

●●●
●
●
●

●

●

●

●

●
●●● ●

●
●

●●●●●●●
●●●
●

●●
●

●●
●●●

●
●

●
●●●●
●
●●●
●●
●●●

●●
●●
●●

●●
●●●●

●
●

●
●●●●●

●
●●●
●●
●

●
●

●●
●●●●●●●●

●●●●

●

●

●

●

●
●

●●

●
●●

●●

●
●
●

●
●●
●

●

●
●

●
●●●●

●

●
●
●●

●
●●

●

●
●
●
●●

●
●●●

●●●

●

●
●

●
●

● ●

●●●●

●

●●
●●●●●
●
●
●

●

●

●

●
●●●●

●

●

●●●
●●●

●
●
●
●●
●●●●
●
●

●

●

●
●●

●
●●●

●●

●

●●●
●●●●●

●
●
●
●

●●

●

●●
●●
●
●●

●

●●
●

●●●
●

●

●
●●
●

●●

●

●
●●
●

●

●
●●●●
●
●

●
●●

●

●
●●●●
●●

●

●

●

●●●
●
●●

●

●
●
●
●

●●●
●
●

●●●●●
●

●

●

●

●
●

●●●●●●
●

●

●

●
●●

●

●
●●
●
●
●●●●●●●
●●●●●
●●

●

●

●
●●

●
●

●

●●●●●
●●●
●●●
●●●
●

●

●
●●●
●●

●
●
●●
●●●●●●●

●
●●
●●

●●●
●●●●●
●

●
●

●

●
●●●

●●
●●●
●●●

●

●
●●●

●
●●●
●●
●

●
●
●
●●

●●●

●

●

●

●
●
●

●

●

●

●●

●

●●
●
●

●●●●
●●
●●
●●

●
●●●●●
●

●
●
●

●

●

●
●●

●●
●●
●●●●●●●●

●

●●●●●●●●
●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●
●

●●●●

●●
●
●
●●
●
●

●
●●●

●●
●

●

●●
●
●●

●

●

●
●●

●
●

●
●
●
●●
●
●

●
●

●
●

●
●
●
●

●
●●
●
●
●

●●

●●

●
●

●
●●●

●●
●

●●

●

●

●●

●
●●●

●●
●

●●
●

●

●
●●●

●
●●●

●●●
●

●

●
●

●●

●

●

●●
●
●
●

●●
●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●●

●

●
●
●●●
●
●
●

●

●

●

●●●●
●●●

●
●

●

●
●
●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●●●●●●●
● ●

●

●
●
●●
●
●
●
●
●
●
●●
●

●

●

●
●

●

●

●
●

●
●
●

●
●
●

●

●●

●
●

●

●
●
●
●●
●
●

●
●●●●●
●●

●

●●●●

●
●●

●
●
●

●

●
●●●●●●●●●●

●

●

●●
●
●●
●

●

●●

●●●●●●●●●
●
●
●●
●
●

●

●●

●

●
●●●

●

●

●●
●

●
●●

●
●

●

●

●
●●

●
●
●●

●
●●●●●

●
●●
●

●

●
●

●

●●●
●●●

●●

●●
●

●

●
●

●●●●
●●●●●

●
●
●●

●
●
●

●
●

●

●●
●●

●

●
●
●

●
●
●

●
●●●

●
●●●●

●●
●●●
●

●
●●●●

●
●●

●●●
●●

●

●
●

●
●

●
●

●

●●●●●

●

●
●

●●●●●
●

●●●●
●

●
●

●
●
●●
●

●●●
●
●
●●

●●●

●
●

●●
●

●

●●●

●

●
●

●
●

●

●●●●
●●

●

●

●

●

●
●●●●●●

●
●●

●
●

●●
●

●

●

●
●

●
●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●
●●
●
●
●
●

●

●

●

●
●
●

●●

●●
●
●

●
●
●●

●
●

●
●
●
●●
●●
●●●●●●●●
●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●●

●

●
●
●
●

●
●
●
●

●
●●
●
●●●●
●
●
●
●
●
●

●

●

●
●

●
●●●●●●
●●

●
●

●●

●

●
●●

●

●●
●
●●●●●●

●

●

●

●

● ●
●

●
●

●

●

●●●
●●

●
●

●

●●●●
●

●
● ●●●

●
●●

●●

●

●

●

●
●
●
●●●
●●●●
●●●●
●
●

●

●

●
●

●
●●●●

●

●●
●

●

●
●●●
●●
●
●
●
●

●
●●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●

●●

●●●

●●

●

●●
●
●●●●
●

●●
●
●
●

●

●
●

●

●
●●
●
●

●

●
●●
●
●●

●

●
●

●

●●●
●●
●●●●●●
●●
●

●●
●●
●

●
●

●●
●

●

●
●

●
●

●
●●

●

●

●

●

●
●●●●
●
●

●
●
●●●●

●●●●

●
●

●

●

●●●●

●

●

●

●
●

●
●

●
●
●
●

●
●
●
●●

●●●
●●●●●
●
●
●
●

●
●

●
●
●
●

●

●
●
●●

●

●

●
●
●
●

●●
●

●

●

●

●

●
●●

●

●

●

●
●●●●●

●
●

●
●

●
●

●●●●
●

●

●●
●
●
●
●●

●●
●

●●
●●●●●●●
●●●●●

●●
●

●

●

●

●
●
●

●
●●●

●

●

●

●

●● ● ●
●

●
●
●●

●
●
●
●●●●●●●●●●

●
●●

●
●●
●●●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●●●●●●

●
●

●
●

●●
●

●
●

●●
●

●
●
●●

●
●●

●
●
●●●●●●●●●●●●
●●●●

●
●
●
●
●
●

●
●
●
●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●●●●●●●●●●●●●
●
●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●
●●
●●●
●●●●
●●●
●●●

●
●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●
●
●
●●
●●
●
●●●●●●●●●

●●
●●

●
●
●

●
●

●
●
●●
●●
●●●●●●●●
●●●●●●●

●●●●

●
●

●

●

●
●●
●
●
●●
●●●●●●

●
●

●
●
●

Scale−Location
1817119

0.000 0.004 0.008 0.012

−
4

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●
●●●●●

●
●
●

●
●
●
●●
●●

●●

●
●
●

●●●●
●●

●

● ●
●●●●
●●●●●

● ● ● ● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●
●

●
●●
●●●●●
●

●
●●

●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●
●

● ● ● ●
●●●

●●●●
●●●●●●●●●●●●●●●● ● ● ● ●●●

●
●

●
●
●

●
●

●
●
●

●
● ●

●
●

●●
● ●●●

●●●●●●●●●
●

●●●
●
●

●●
●
●●
●
●●●

●
●
●
●
●
●●
●
●●
●●●●●●●●●●●

●
●●

●
●
●●

●
●
●
●●

●●●
●●●●●●●●●●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●●●●●●●●●●●●●

●●●●
●●
●●
●
●
●

●
●●

●
●
●●●●●
●●●

●●●●●
●●●●●

●●●●●●●●●●●●
●●●●
●●●
●

●●
●
●●●
●●

●
●

●
●

●●
●●●●

●
●
●

●
●●
●
●●

● ●●

●
●
●●

●

●●

●

●

●

●
●

●

●
●●●●

●
●●

●●
●●
●

●●
●●

●●
●

●
●●
●●

●

●
●●●●

●● ●●●●●●●●●●●
●
●

●●●●
●●
●●●●
●●●
●●●●●●●

●●●●●●●●
●●●

●

●
●

●●●●●
●●
●●
●●
●●●

●●
●●●

●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●

●●
●●
●

●●
●●

●●
●●●

●
●●
●●
●●●●●●●●
●●●●●●

●
●
●
●
●
●

●
●
●
●
●
●●
●
●
●
●●●
●●●●●●●●

●●●●●●●
●●●●

●●
●●

●●

●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●●●●

●●●
●●●●●●●●●

●
●●●

●●●●●●●
●●●●●

●●●●
●●●●●
●
●●●

●●●

●

●

●
●

●●●●●●
●●
●●●
●●●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●
●
●
●
●
●●

●
● ●●●●

●●●●

●●●
●

●●
●
●

●
●
●
●

●
●
●●
●
●
●
●

●●●●●●
●●●●●
●
●●●●
●●
●●●
●●●●

●

●

●●●
●●

●●
●●●
●●●●
●●●
●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●

●

●●●
●
●

●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●

●●●●

●●●
●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●

●
●
●
●
●
●
●
●
●
●●●●●●
●●●●
●●
●●

●●
●
●
●●
●●●

●
●

●●

●
●
●
●
●
●●
●
●●●●●●●●●●●●●●●

●●
●
●
●
●●●
●●

●●●●●●●
●
●
●●
●●

●●
●

●
●●
●
●
●●
●
●●

●●●●
●●

●●
●

●●
●
●●●●
●
●
●
●●
●●
●

●

● ●●●
●●

●●
●
●
●

●
●

●
●

●
●●
●●●

●●●●●●●
●
● ●●

●●●●
●●●

●●
●

●

●
●●
●●●
●●
●●●●●●●●●●●●●●●●
●●●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●●●●●●●●●●●

●●
●
●●
●●

●
●

●●
●●
●●

●●
●●

●●
●●●
●●●●
●
●●●
●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●
●

●●●●
●●●●
●●●●●
●●●●
●●●●
●●
●●

●
●●
●

●●●●●●●
●●●●●
●
●
●●●●●
●●●●●
●●●
●
●●●●●

●●
●●
●●●●●
●●●
●●
●●●●
●
●

●●●●●
●●
●●
●●●●●●●●
●●
●
●●●
●●●

●
●

●●
●●●●●●●●●●

●
●●●●
●
●●
●
●

●●
●

●
●
●

●●●
●
●
●●●●●●●●●●

●
●●
●●
●
●
●●●●●●

●
●
●●
●
●●
●
●●●●
●●●●●●
●

●●●
●●●

●

●●
●
●●
●
●
●
●●

●●●●●
●
●
●
●●●●●
●
●●●

●●●●
●●
●●
●●●
●
●●

●●●
●●●
●
●
●
●
●
●●
●
●
●●
●●
●●
●●
●●
●
●●●●●
●●●
●●●●●●●●●
●●
●●
●●
●
●●●●

●●●●
●

●

●

●

●
●●●●●

●●●
●●●●

●●●●●●●●●●●
●●●
●●●●

●●
●
●●
●
●

●
●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●
●

●
●
●
●

●
●

●●

●●●●
●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●

●●
●
●●

●●

●●
●●
●●
●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●
●

●
●

●

●
●●● ● ●

● ●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●

●●●
●●●●●●●●
●●●●●●●●●
●
●●
●●●●●●
●●●●●●
●●
●●
●●●●●●●●
●●●●
●
●
●
●
●●
●●
●●●
●●●●●
●●●●
●●
●
●●●●●

●
●●●●●●●●

●●●
●●
●●●●
●●●
●

●●
●●●

●
●●●●
●
●●●●●●●
●●
●
●
●
●●
●●●●●
●
●●●

●●●●●●●●●●●●
●●●●
●●●
●●●●●
●●●●●●●●
●●
●●
●●
●●●●
●●
●●●
●●
●●
●●
●●●
●
●●●●●
●
●
●●●●
●●●●●●
●●●
●●●
●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●
●
●●●●
●●●●●●●
●●●●●
●●●
●●●
●
●●
●
●
●
●●
●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●

●
●●
●●●●●●●●●●●●●
●●●●●●●
●●●●
●

●
●
●
●
●
●

●
●●

●
●
●
●
●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●
●
●
●●●●

●●●●●
●
●
●●●●●●●
●●
●●
●●●●●
●
●●●●
●●●

●
●●●●
●●
●
●●●●
●

●●
●●
●
●
●●●

●●●
●●●

●●
●
●
●●
●●
●
●●●
●●●
●●
●
●

●
●●●●
●●●●

●
●
●●●●●
●●●●
●
●●
●
●●
●
●
●
●●●●●●●

●●
●
●●●●●

●●●
●●●●●●●
●●
●
●
●●●●●

●●●
●

●●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●

●
●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●
●

●●●●●
●●●●

●
●●●
●
●●

●●●●●●●
●●●●●
●
●●●
●●●●
●
●●●●●●●●●
●●
●●●
●●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●
●
●●
●●●●●●●●●
●●
●●
●
●●●●●

●
●●
●●●●●●●●●●
●
●●●

●●●
●
●●●●●●

●
●●●
●●
●●●●●●●●
●●
●●
●
●●●●
●●
●
●

●
●

●●●●●●●●
●●●
●●●●
●●
●●●

●●●●
●●

●
●●
●●
●●

●●
●●●
●
●●●
●

●●●●
●●●●●●●●●●●●●●
●●●●

●
●
●
●
●
●

●●●●
●
●
●
●

●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●

●●
●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●

●

●
● ●

●
●

●

● ●
● ●●●●●●

●

●●●●●●●●●●●●●

●
●●●●

●●
●●●●●●●●●
●●●
●●
●●●

●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●●
●●
●
●
●

●
●

●

●●
●
●
●
●●

●●
●●
●●●●
●●●
●
●●
●
●●●
●●●●●●●●●●●

●
●●
●●●●●●●●●●●●

●
●●
●●●●●●●●●●●●
●●●
●●●
●●●
●
●●●

●
●●●●
●●●●
●●
●●●●●●●●
●●●●●●
●●●●
●●
●●

●●●●●●●●●
●●●●●
●
●
●
●
●●
●●●●●●●●
●●●●
●●●●

●●
●●
●●●●

●
●●●●
●●●●
●
●
●
●●
●●

●

●
●
●●●
●●
●●
●●

●●●
●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●● ●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●
●●

●
●

●

●

●
●●●●●●

●●
●●
●●
●●
●●●

●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●

●

●
●●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

●●●
●

●
●

●

●
●
●●●●●●●●●●●●●●●●

●●●
●●

●
●

●
●

●
●

●
●
●●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●●
●●

●●
●●●●
●●●●●●●●●●●●

●●●
●

●
●
●
●●
●

●
●

●
●

●
●
●
●

●●●
●

●
●
●
●●●

●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●

Cook's distance

Residuals vs Leverage

183184185

Figure 7.1.: Scatterplots for residual analysis of the heading delta fitted model. Fitted val-
ues and non-standardised residuals are given in radians.

deviation from the line is not significant and the normality assumption (II) can well be
satisfied.

The third plot in the bottom left corner shows the square roots of the standardised resid-
uals’ absolute values against their corresponding fitted values. This is used for verifying
assumption (III) in detail, i.e. the homoscedasticity of the residuals. If a systematic trend
becomes apparent in the red average line, this assumption may be violated, e.g. if the line
is steadily increasing over the whole length. It can be seen that there is a bend in the middle
of the line, but a significant trend can not be noticed as the variance is rather homogeneous
between values of 0.6 and 0.9.

As the four assumptions have been satisfied for this model, one last property can be ex-
amined: the existence and influence of outliers on the model, i.e. single points that are
very far away from others. They can be studied with the help of the fourth and last plot
in figure 7.1, which shows the leverage values hjj against the standardised residuals. A
metric that is useful in this context is Cook’s distance Dj [Coo77] of each data point, which
is given by

69

7. Evaluation

Dj =

(
ε2j

p
∑N

k=0 ε
2
k

)(
hjj

(1− hjj)2

)
where p is the number of parameters or dimensions in the model. It is argued in the
literature that a distance of Dj > 1 can be taken as a cut-off value, sometimes already
Dj >

1
2 for determining outliers. Both those lines would be shown in the plot, if they were

not to far outside. This means that no point comes even near those distances, which in
turn indicates that the model is not influenced negatively by such values.

Note, that these evaluations were also made with the models of the other body features,
which are discussed later, with a very similar outcome. After having verified these models,
their origin shall be outlined in the following.

7.2.3. Feature selection

First, the a very simple hypothesis space, in which the heading delta is described by a lin-
ear combination of only the current three attitude Euler angles features is regarded:

∆h ∼ φ+ θ + ψ

To get a glimpse on how good this describes the real relationship and how accurately fu-
ture values will be predicted, the coefficient of determination [ST60], also called R-squared
or R2, can be used. It ranges from 0 to 1, and can be seen as the percentage with which
the fitted model matches the data better than a simple average would. It is therefore de-
fined with the help of a quotient of the sum of squared residuals and the sum of squared
differences between the response values and their average:

R2 = 1−
∑N

j=0 ε
2
j∑N

j=0 (yj − ȳ)2
with ȳ =

1

N

N∑
j=0

yj

A useless model would always predict the average value of the responses yj in the training
data, therefore the all residuals were εj = yj − ȳ, the quotient would be 1, finally yielding
a R2 value of 0%. If all training data points lie very close to the fitted model, however, the
residuals get very small until reaching a R2 value of 100% if all residuals would be exactly
0.

A fitted model in the aforementioned model of solely attitude angles has an R2 value of
45% for the given total training data set. To compare this with more complex models,
including more dimensions, the R2 is not adequate. For this purpose, an adjusted version
was presented in [The61] which accounts for the number of dimensions n in the model
and their relation to the number of samples N :

R̄2 = 1− (1−R2)
N − 1

N − n− 1

70

7.2. Model analysis

While R2 can increase with the number of dimensions, even if no actual improvement was
made in the model, the adjusted R2 only grows if a new dimension improves the model
more than would be expected by chance.

Due to the high number of samples and low number of dimensions that was used for the
fitting of the simple attitude angle model, the adjusted R2 is nearly the same as the non-
adjusted version: also about 45%. To test if any relations between the angles explain the
response more than the angles alone, the following model was fitted:

∆h ∼ (φ+ θ + ψ)3

It uses all combinations of the angles to reason about the response value. The adjusted R2

value indeed increased to a value of 52% in this case. This still does not contain any infor-
mation about the past time window, which could hold valuable information. For this rea-
son, the statistical features were presented in section 5.3.2. Using the standard deviations
of the angles and the correlation coefficients between them over a certain time window to
extend the hypothesis space yields the following ten-dimensional model space:

∆h ∼ φ+ θ + ψ + σφ + σθ + σψ + ρφ,θ + ρφ,ψ + ρθ,ψ

These additions increased the R̄2 value to 66%, without even including any combination
between the features. Only adding the standard deviations yielded 58%, only extending
it with correlation coefficients still made a 52% adjusted R2 value, i.e. in both cases it
improved the model, both additions together improved it even more. This is a strong
indication for those features to contribute positively to the explanation of the response.
Note, that this model was also taken for the scatterplots in the previous section.

To analyse this further, t-tests can be made on each of the coefficients wi. Therefore, the
quotient of the fitted coefficient and its standard error SEwi is used, i.e.

t =
wi
SEwi

will provide a t-statistic. The null hypothesis H0 is in this case that the coefficient is zero
and therefore the dimension only has a constant part which can also be added to the con-
stant coefficient w0, i.e the dimension does not contribute to the model. The results for
these tests were in the above model with nine features, that for every feature, this hy-
pothesis could be rejected with a confidence level of 99% or even more. This means these
features all have a significant influence on the result and contribute to the quality of the
model.

An additional test can be made on all coefficients at one. The idea behind this is to test if the
model becomes significantly worse when removing certain dimensions. For this purpose,
the residual sum of squares is calculated for the original (RSS1) and the reduced model
(RSS2). The F-test is taken for this purpose, with the following F-statistic:

71

7. Evaluation

F =
(RSS2 −RSS1)/q
RSS1/(N − n)

where q is the number of reduced parameters. For example, a model can be compared
with the very simplest case of removing all dimensions except the constant coefficient.
Again, for the currently regarded model with its nine features, the null hypothesis for this
comparison could be rejected with a confidence of far over 99,99%. This means the model
is a significant improvement compared to the constant one, which is not too surprising.
With this test, however, two arbitrary models can be compared, if one uses a subset of
features of the other.

7.2.4. Final models

After validating a lot of t-tests for single dimensions and F-tests for checking what hap-
pens if certain dimensions are omitted or added, the hypothesis spaces that proved to be
the most suitable for the purpose of this work was selected. It was already anticipated:
the heading delta is best represented by a model with all three attitude angles, standard
deviations and correlation coefficients, i.e.

∆h ∼ φ+ θ + ψ + σφ + σθ + σψ + ρφ,θ + ρφ,ψ + ρθ,ψ

No additional cross correlations were introduced between them, as the improvement was
negligible and quite contrary the risk of overfitting became real.

It was concealed until now, however, that also several other features were tested, which
showed to be insignificant and not improve the model, such as the periodicity features
and the mean over the time window. Also, features were tested that were not specially
presented in this work, like the linear acceleration itself as well as features which were de-
duced from it, which also proved to be unsuitable to explain the response variables.

Interestingly, the primary leg angle, i.e. the side where the mobile device is located,
showed also to be best predicted by the very same features. Its hypothesis space is given
by:

αleg ∼ φ+ θ + ψ + σφ + σθ + σψ + ρφ,θ + ρφ,ψ + ρθ,ψ

The results for the opposite leg, however, show a comparatively large deviation from the
normal distribution for the residuals. This became apparent in the normal Q-Q plot, where
the values are bent away from the line in the lower and upper third. It also showed rel-
atively large residuals. Those were clear indications that the model was not suitable and
the given features could not sufficiently explain the response value.

Intuitively, this can be explained by imagining that the leg angles can be in two modes:
when standing and sitting as well as transitioning between those states, both leg angles
are nearly equal or at least rotating in the same direction. When walking, however, the

72

7.3. Results

leg angles behave inversely, as in each step one angle is rotating in one direction while the
other is rotating in the opposite way.

To model this, a reliable explanatory feature is needed for distinguishing those different
movement patterns. As the results show, the periodicity feature presented in section 5.3.3
does not adequately capture this. Statistical tests showed that this features does not signif-
icantly contribute to the model. Maybe those more advanced periodicity detection mech-
anisms, mentioned in the same section (5.3.3), provide better suited regressor variables for
this purpose. However, it was not possible to test this in this work anymore.

7.2.5. Cross-validation

The models for the heading delta and the primary leg angle were furthermore tested via
k-fold cross-validations [RN10, p. 708]. This technique allows to estimate if enough training
data was collected and if the model is likely to predict reasonable values for unknown
future inputs. The test set is split into k disjunct partitions for this purpose. Due to the
independence of the samples, as discussed in section 5.1.3, these can be randomly chosen.
These partitions serve a double duty then: in each of the k rounds one is used to fit a model
in the given hypothesis space, which is then tested against data from the respective other
partitions.

To evaluate the results, the average R2 value of all rounds is compared with the R2 value
of the model over the total training data set. If the test data is not sufficient, the average
R2 will be much lower than the total one, as the models perform poorer and are not able
to predict data they were not trained on.

The results of a 10-fold cross-validations, which is a common value of k for such purposes
[RN10], were very clear: for the heading delta model, the R2 average value was only less
than 0,5% smaller than the total R2. The model for the primary leg had even only 0,15%
decrease. These are again clear indicators for the robustness of both models and are a sign
that a sufficient amount of training data was taken into account.

7.3. Results

Having detailed the process of dimension selection for an adequate model and having
tested those models against various assumptions, the results will now be presented.

7.3.1. Prediction precision

Aside from all these decisions specific to regression, other parameters had to be balanced
as well to achieve a good quality of prediction. One of the most important ones in this
context is the length of the sliding window. As presented, values in this window are taken
to calculate time-dependent features of which two are especially relevant in the regression

73

7. Evaluation

−40° −20° 0° 20° 40°

0.
00

0.
01

0.
02

0.
03

0.
04

Primary leg angle: residual density

Residual in degree

D
en

si
ty

−40° −20° 0° 20°

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Heading delta: residual density

D
en

si
ty

40°

Residual in degree

Figure 7.2.: The densities of the residuals are shown from the fitted models of both the
primary leg angle and heading delta response variables. The courses of the
ideal normal density graphs are shown with dotted lines.

models: the standard deviation and the correlation coefficient, each one needing to look
back a certain number of time frames.

If this number is chosen too small, the calculated values lose their meaning, as the values
of the sensors do not change drastically from one frame to another most of the time. A
standard deviation over a very short period of time, which contains a set of nearly constant
values will not carry much information, for instance. If the time window is chosen too
large, the time-dependent features will no longer be responsive enough to changes, as
they will be ‘blurred’ by values which lie too far in the past. After many different test, a
time window of 32 samples has emerged to be the best choice in terms of precision of the
results. A power of two was chosen as it simplified the FFT calculation for the periodicity
features. With a frequency of about 31 frames per second (see section 5.1.2), this equals a
time window of about one second.

The final precision of the predictions can be seen in the two density diagrams in figure 7.2
for the two discussed response variables. The evaluation of samples quantiles shows that
with a probability of 50% the heading delta value differs no more than 5.5◦ from the true
value and is in 75% of all cases still inside a range of−9.8◦ to 10.7◦. Only in 5% of all cases,
the model predicts an angle with a deviation of ±20◦ or more.

For the leg angle, results are similarly promising, even though of slightly less precision.
Half of all values are predicted with a deviation of about ±7.8◦, 75% lie inside a ±12.3◦

range, while angular differences of more than 26◦ are only predicted with a 5% chance.

74

7.3. Results

These are the deviations from the predicted from the measured values, however. Those
measured values from the Kinect are in turn again different from the true real-world val-
ues. As can be seen in [Kho11], the accuracy of the depth map is depending on the distance
of the subject to the depth sensor. At a distance of the test persons of about 3.5m, the stan-
dard deviation of depth measurements is still lower than 2cm. With a typical shoulder
joint distance of about 40cm, this yields a standard deviation of the error for the measured
shoulder angle as small as about 5.5◦ in the worst case. Both normally distributed errors
sum up to an again normally distributed total error with the standard deviation also being
the sum of the single ones, which is also shown in the next section.

7.3.2. Probability density of δθ

As already mentioned in the first chapter of this work, the difference of shoulder heading
angles of different persons δθ is an essential part for the method presented in [GLR+10],
which uses this variable together with other parameters to reason about social interactions.
As the method of this thesis yields just such single headings, which are absolutely oriented
in a local reference frame, it can easily be extended to a system of two persons with mobile
devices running this method, which both exchange their heading values to calculate the
δθ value. Although such a system was not yet implemented, the expected precision shall
be discussed in theory briefly.

Let X and Y be the random variables of the two errors, which are both normally dis-
tributed with a mean of µX = µY = 0 and an equal standard deviation σX = σY . The
difference between those two variables will be defined as Z = X − Y . Due to the nor-
mal distribution with a zero mean, Y = −Y follows, which can be seen by imagining the
density graph, which is symmetric around 0. Therefore, the difference is equivalent to the
sum of both random variables, i.e. Z = X + (−Y) = X + Y . As X and Y are independent
from each other, the resulting variable Z is distributed normally again, with parameters
(µX + µY , σ

2
X + σ2Y). This can also be seen by imagining that the density function of Z is

the result of the convolution of the two original densities [HMC05], i.e.

fZ = fX ∗ fY

Using the moment generating functions, like explained in [Ros07], yields:

φX+Y (t) = φX(t) φY (t)

= exp

[
σ2Xt

2

2
+ µXt

]
exp

[
σ2Y t

2

2
+ µY t

]
= exp

[
(σ2X + σ2Y)t2

2
+ (µX + µY)t

]
The resulting moment generating function uniquely describes the distribution and with
the parameters of X and Y , it follows: Z ∼ N(0, 2σ2X). Therefore, the standard deviation

75

7. Evaluation

of Z is
√

2 times the one of X , which makes the total error of δθ only about 41% larger than
one of the heading delta, shown above.

This means, δθ would result from two different predictions on two separate devices and
could be precise to a range of ±14◦ with a 75% certainty. However, this requires also the
chronological synchronisation to be accurate enough and can only be achieved if other
disturbances are minimised as well.

7.3.3. Generalisation

The previously discussed results were based on a combined training set of different test
subjects. Like already argued in the beginning of this work, in section 1.3.3, it is desirable
to have such a generalised model that works well for different people. This has raised the
question, however, how much accuracy is lost with such an approach in comparison to a
model that is fitted individually for each user.

The results have answered this question pretty clearly: The standard deviation of the
residuals of individually fitted models was decreased by about 5-10% at most. One test
subject’s model predicted even slightly worse values than the combined model in a later
test. This was presumably caused by having had an insufficient amount of training data
for the users own model. As often the case with machine learning techniques, every iter-
ation of improvement is getting harder than the previous ones and yields less gain in the
results.

In conclusion, the trade-off has to be made specifically with the application atop of this
method in mind. It has to be carefully balanced whether or not this small increase in accu-
racy is worth the effort of training a specific model for each and every user. Furthermore,
this gain can only be achieved by intensive training, again for each user. The training data
set has to be carefully selected, only collecting data if the person is fully in sight of the
depth sensor, and if the mobile device is actually inside the pocket. In many cases, this
effort may not be in reasonable proportion to its comparatively small benefit.

It should be also noted that different trousers with differently cut pocket shapes or even
other parameters can vary from time to time for the same user. These variations are
fairly similar to those originating from varying the user in a generic model. With the
inevitable presence of these uncertainties, the construction of a generalised model is even
more favourable.

76

Conclusion

In this thesis, a concept was proposed to use inertial sensors of smartphone devices to infer
certain body geometry features of the user that is carrying it. The assumption was made,
that the user carries his device in one of his trousers’ pockets to make the scope of this work
feasible. After having outlined the frame conditions that are given, namely the phone sen-
sors and their properties, a method was presented that is able to infer those target values
via a machine learning algorithm, after having been trained adequately. The collection
of training data was achieved by using a depth image sensor and a skeleton estimation
framework that provided with actual values of the user’s body geometry, simultaneously
to the measured phone sensor values.

The presented method uses a number of transformations before and after applying the
actual learned model, which exploit domain knowledge to improve the overall precision
of the result. A software implementation of the presented approach provided for data
collection to asses different models and evaluate the overall results. Not only this, a com-
plete modular framework was implemented that can be used to develop improved meth-
ods based on inertial sensors and machine learning techniques, as it offers all fundamental
functionalities starting from recording and replaying sequential measurements over to sig-
nal processing and visualising intermediate and final results.

As conclusion about the specific results of the fitted body geometry features, it can be
stated that especially two regarded features proved to be very reliably detectable: the users
heading and the angle of the leg where the phone is located. Though other features about
the body posture did not prove to yield promising results, the ability of determining these
two is a huge achievement of this work. The final precision of both those values was better
than the author expected. Furthermore, it is just those two features that are very valuable
indeed for many applications.

It was already mentioned that this could be applied to social situation detection methods,
where the relative heading of two persons is of special interest. As the yielded heading,
like presented, is relative to a common local reference system, such a relative heading can
easily be deduced.

As only one additional example, these two angles could also find application in pedestrian
or indoor navigation, where the leg angles can be used to detect both the number of steps
as well as their size, as a larger step must yield a larger deviation in the leg angle. At the
same time, the users heading angle indicates the direction in which the user is walking,
which is something that could not be accounted for with the phone heading alone.

Just like in this example, there are certainly many areas in which these body-related values
are more useful than the raw phone-related ones. This might as well answer the question

77

Conclusion

that was left open in the first chapter: whether or not the applied domain knowledge
allows to receive more expressive data than contained in the raw sensor readings alone. It
is left to the reader to judge if this goal was achieved.

Transforming sensor values for feature extraction and applying them to the fitted regres-
sion model is expected, but not yet tested, to run in real-time even on smartphones them-
selves. This way, the software would act as a high-level sensor, introducing an abstracting
layer above the sensor-fusion layer that is in turn using the raw sensor data. The direct
output of body geometry parameters could then be used for enhanced functionalities in
applications, as the phone is aware of the user’s facing direction alongside other parame-
ters about the users pose.

However, there is still room for improvements. Beginning with the detection of the wear-
ing position, the periodicity extraction and not even ending at the very fundamental ma-
chine learning approach, there is a lot that can possibly be improved in future works.
Maybe even other body geometry features can be estimated with further enhancements to
the presented technique.

78

Appendix

79

A. Microphone recording correlations
I

D
 #

1
I

D
 #

2
I

U
 #

1
I

U
 #

2
I

U
 #

3
I

U
 #

4
L

#1
L

#2
O

 D
 #

1
O

 D
 #

2
O

 U
 #

1
O

 U
 #

2
O

 U
 #

3
O

 U
 #

4
I

D
 #

1
10

0,
0

%
I

D
 #

3
I

U
 #

1
I

U
 #

2
I

U
 #

3
I

U
 #

4
L

#1
L

#2
O

 D
 #

1
O

 D
 #

2
O

 U
 #

1
O

 U
 #

2
O

 U
 #

3
O

 U
 #

4

89
,8

 %
10

0,
0

%
71

,1
 %

79
,5

 %
10

0,
0

%
54

,3
 %

65
,4

 %
85

,0
 %

10
0,

0
%

82
,7

 %
75

,7
 %

79
,2

 %
61

,5
 %

10
0,

0
%

89
,7

 %
83

,4
 %

76
,0

 %
55

,4
 %

90
,1

 %
10

0,
0

%
88

,2
 %

85
,0

 %
61

,5
 %

45
,9

 %
70

,1
 %

77
,7

 %
10

0,
0

%
87

,5
 %

85
,1

 %
60

,4
 %

43
,7

 %
69

,0
 %

77
,0

 %
99

,7
 %

10
0,

0
%

85
,6

 %
87

,8
 %

87
,8

 %
69

,6
 %

82
,0

 %
90

,5
 %

80
,0

 %
79

,6
 %

10
0,

0
%

96
,5

 %
90

,3
 %

76
,4

 %
58

,6
 %

82
,0

 %
88

,2
 %

83
,7

 %
83

,5
 %

85
,4

 %
10

0,
0

%
62

,4
 %

78
,0

 %
90

,3
 %

82
,5

 %
67

,6
 %

69
,6

 %
57

,1
 %

56
,0

 %
87

,6
 %

65
,6

 %
10

0,
0

%
60

,2
 %

74
,4

 %
94

,7
 %

85
,2

 %
70

,3
 %

67
,5

 %
47

,8
 %

46
,4

 %
82

,8
 %

64
,4

 %
95

,9
 %

10
0,

0
%

84
,9

 %
77

,7
 %

35
,4

 %
6,

8
%

60
,3

 %
77

,4
 %

83
,2

 %
83

,5
 %

66
,4

 %
76

,5
 %

30
,9

 %
22

,9
 %

10
0,

0
%

83
,0

 %
70

,3
 %

33
,1

 %
0,

0
%

63
,2

 %
76

,9
 %

76
,6

 %
77

,2
 %

64
,0

 %
76

,1
 %

26
,1

 %
18

,4
 %

93
,6

 %
10

0,
0

%

Fi
gu

re
A

.1
.:

A
se

le
ct

ed
su

bs
et

of
m

ea
su

re
d

so
un

d
sp

ec
tr

a,
w

it
h

th
e

de
vi

ce
ha

vi
ng

be
en

in
va

ri
ou

s
or

ie
nt

a-
ti

on
s.

Th
e

ta
bl

e
sh

ow
s

th
e

si
m

ila
ri

ty
of

ea
ch

sp
ec

tr
um

to
al

lo
th

er
s.

Th
e

si
m

ila
ri

ty
w

as
de

te
r-

m
in

ed
by

ca
lc

ul
at

in
g

th
e

su
m

of
sq

ua
re

d
di

ff
er

en
ce

s
of

al
lf

re
qu

en
cy

co
m

po
ne

nt
s

of
th

e
re

sp
ec

-
ti

ve
sp

ec
tr

a.
Th

e
pe

rc
en

ta
ge

va
lu

es
w

er
e

de
du

ce
d

by
lin

ea
rl

y
no

rm
al

iz
in

g
th

e
re

su
lt

s,
su

ch
th

at
0%

m
ea

ns
th

e
le

as
to

fa
ll

si
m

ila
ri

ti
es

an
d

10
0%

de
no

ti
ng

id
en

ti
ty

.
Th

e
ab

br
ev

ia
ti

on
s

fo
r

th
e

di
f-

fe
re

nt
st

at
es

ar
e

as
fo

llo
w

s:
L

—
de

vi
ce

ly
in

g
on

th
e

gr
ou

nd
I

—
di

sp
la

y
fa

ci
ng

in
w

ar
ds

O
—

di
sp

la
y

fa
ci

ng
ou

tw
ar

ds
U

—
up

ri
gh

ts
ta

nd
in

g
D

—
up

si
de

do
w

n

81

A. Microphone recording correlations

82

B. Implementation screenshots

Figure B.1.: Screenshot of the application with the diagrams for selectable features and ren-
derings of the device attitude, measured skeleton and estimated pose (from left
to right) as well as the recorder controls to the bottom.

83

B. Implementation screenshots

Figure B.2.: Screenshots of the mobile phone application. The left picture shows the start
screen of the application, with real-time updated measurements of all sensors
and the sensor fusion process. The user interface to connect to the PC software
for transferring the sensor readings is shown to the right.

84

Bibliography

[AAA07] R. Abdolvand, B.V. Amini, and F. Ayazi. Sub-Micro-Gravity In-
Plane Accelerometers With Reduced Capacitive Gaps and Extra Seismic
Mass. Journal of Microelectromechanical Systems, 16(5):1036–1043, October
2007. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4337776, doi:10.1109/JMEMS.2007.900879.

[ABMp+] Akin Avci, Stephan Bosch, Mihai Marin-perianu, Raluca Marin-perianu, and
Paul Havinga. Activity Recognition Using Inertial Sensing for Healthcare ,
Wellbeing and Sports Applications : A Survey. Methods.

[App12] Apple Inc. CMMotionManager — ‘startDeviceMotionUpdatesUsingRefer-
enceFrame’ Function, 2012. URL: http://developer.apple.com/library/
ios/documentation/CoreMotion/Reference/CMMotionManager_Class/

CMMotionManager_Class.pdf.

[Asa10] Asahi Kasei Microdevices. Technical Specifications: 3-axis Electronic Compass
AK8975/B, 2010.

[BD10] Andrew Bookholt and Miroslav Djuric. iPhone 4 Gyroscope Teardown, 2010.
URL: http://www.ifixit.com/teardown/t/3156.

[BI04] Ling Bao and Stephen S Intille. Activity Recognition from User-Annotated
Acceleration Data. Most, pages 1–17, 2004.

[Bis06] C.M. Bishop. Pattern Recognition And Machine Learning. Springer, 2006.

[Bri88] E. Oran Brigham. The fast Fourier transform and its applications. Prentice Hall,
Englewood Cliffs, N.J., 1988.

[CF86] G. A. Cavagn and P. Franzetti. The determinants of the step frequency in walk-
ing in humans. The Journal of Physiology, (373):235–242, 1986.

[CH06] S. Chatterjee and A.S. Hadi. Regression Analysis by Example. Wiley-Interscience,
2006.

[Col07] Shane Colton. The Balance Filter — A Simple Solution for Integrating Ac-
celerometer and Gyroscope Measurements for a Balancing Platform, 2007.
URL: http://web.mit.edu/scolton/www/filter.pdf.

[Col11] R. Colin Johnson. MEMS gyroscopes become ubiquitous in smartphones.
MEMS Investor Journal, 2011. URL: http://www.memsinvestorjournal.com/
2010/05/mems-gyroscopes-become-ubiquitous-in-smartphones.html.

85

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4337776
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4337776
http://dx.doi.org/10.1109/JMEMS.2007.900879
http://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionManager_Class/CMMotionManager_Class.pdf
http://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionManager_Class/CMMotionManager_Class.pdf
http://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionManager_Class/CMMotionManager_Class.pdf
http://www.ifixit.com/teardown/t/3156
http://web.mit.edu/scolton/www/filter.pdf
http://www.memsinvestorjournal.com/2010/05/mems-gyroscopes-become-ubiquitous-in-smartphones.html
http://www.memsinvestorjournal.com/2010/05/mems-gyroscopes-become-ubiquitous-in-smartphones.html

Bibliography

[Coo77] R. Dennis Cook. Detection of Influential Observations in Linear Regres-
sion. Technometrics (American Statistical Association), 19(1):15–18, 1977. doi:
10.2307/1268249.

[Dau12a] Philip Daubmeier. BodyOrientation — Source code, 2012. URL: https://
github.com/philipdaubmeier/BodyOrientation.

[Dau12b] Philip Daubmeier. Sensor Emitter — Windows Phone Mar-
ketplace, 2012. URL: http://windowsphone.com/s?appId=

08c94bea-924b-44b9-b4e3-03e571ea8ceb.

[Dau12c] Philip Daubmeier. Sensor Emitter web page, 2012. URL: http://daubmeier.
de/philip/sensoremitter/.

[Die06] James Diebel. Representing Attitude : Euler Angles , Unit Quaternions , and
Rotation Vectors. 2006.

[DKL98] Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions , Interpolation
and Animation. Spring, 1998. URL: http://www.itu.dk/people/erikdam/
DOWNLOAD/98-5.pdf.

[DW10] St. J. Dixon-Warren. Motion sensing in the iPhone 4: MEMS accelerom-
eter. 2010. URL: http://www.memsinvestorjournal.com/2010/12/

motion-sensing-in-the-iphone-4-mems-accelerometer.html.

[DW11a] St. J. Dixon-Warren. Motion sensing in the iPhone 4: electronic compass.
MEMS Investor Journal, 2011. URL: http://www.memsinvestorjournal.

com/2011/02/motion-sensing-in-the-iphone-4-electronic-compass.

html.

[DW11b] St. J. Dixon-Warren. Motion sensing in the iPhone 4: MEMS gyroscope. MEMS
Investor Journal, 2011. URL: http://www.memsinvestorjournal.com/2011/
01/motion-sensing-in-the-iphone-4-mems-gyroscope.html.

[Fac12] Facebook. Facebook Newsroom — Statistics, 2012. URL: http://newsroom.
fb.com/content/default.aspx?NewsAreaId=22.

[Gar84] W. A. Gardner. Learning characteristics of stochastic-gradient-descent algo-
rithms: A general study, analysis, and critique. Signal Processing, 6(2):113–133,
1984. doi:10.1016/0165-1684(84)90013-6.

[GD10] Georg Groh and Philip Daubmeier. State of the Art in Mobile Social Network-
ing on the Web — Tech.-Report TUM-I1014. Technical report, Institut für Infor-
matik, TU-München, 2010.

[GLR+10] Georg Groh, Alexander Lehmann, Jonas Reimers, Rene Friess, and Loren
Schwarz. Detecting Social Situations from Interaction Geometry. Proc. IEEE So-
cialCom 2010, Minneapolis USA, 2010. doi:10.1109/SocialCom.2010.11.

[Goo11] Google Inc. Android API Guides — Motion Sensors, 2011. URL: http://
developer.android.com/guide/topics/sensors/sensors_motion.html.

86

http://dx.doi.org/10.2307/1268249
http://dx.doi.org/10.2307/1268249
https://github.com/philipdaubmeier/BodyOrientation
https://github.com/philipdaubmeier/BodyOrientation
http://windowsphone.com/s?appId=08c94bea-924b-44b9-b4e3-03e571ea8ceb
http://windowsphone.com/s?appId=08c94bea-924b-44b9-b4e3-03e571ea8ceb
http://daubmeier.de/philip/sensoremitter/
http://daubmeier.de/philip/sensoremitter/
http://www.itu.dk/people/erikdam/DOWNLOAD/98-5.pdf
http://www.itu.dk/people/erikdam/DOWNLOAD/98-5.pdf
http://www.memsinvestorjournal.com/2010/12/motion-sensing-in-the-iphone-4-mems-accelerometer.html
http://www.memsinvestorjournal.com/2010/12/motion-sensing-in-the-iphone-4-mems-accelerometer.html
http://www.memsinvestorjournal.com/2011/02/motion-sensing-in-the-iphone-4-electronic-compass.html
http://www.memsinvestorjournal.com/2011/02/motion-sensing-in-the-iphone-4-electronic-compass.html
http://www.memsinvestorjournal.com/2011/02/motion-sensing-in-the-iphone-4-electronic-compass.html
http://www.memsinvestorjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-gyroscope.html
http://www.memsinvestorjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-gyroscope.html
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://dx.doi.org/10.1016/0165-1684(84)90013-6
http://dx.doi.org/10.1109/SocialCom.2010.11
http://developer.android.com/guide/topics/sensors/sensors_motion.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html

Bibliography

[GR11] Duncan Graham-Rowe. A New Direction for Digital Compasses. Technology
Review, 2011.

[Hal79] E. H. Hall. On a New Action of the Magnet on Electric Currents. American
Journal of Mathematics, 2(3):287, September 1879. doi:10.2307/2369245.

[HMC05] R. V. Hogg, J. W. McKean, and A. T. Craig. Introduction to mathematical statistics.
Pearson Education, 2005.

[ICG05] F. Ichikawa, J. Chipchase, and R. Grignani. Where’s the phone? A study of
mobile phone location in public spaces. IEE Mobility Conference 2005. The Second
International Conference on Mobile Technology, Applications and Systems, 2005:142–
142, 2005. doi:10.1049/cp:20051557.

[IDC11] IDC — Press Release. Smartphones Outstrip Feature Phones for First Time in
Western Europe as Android sees Strong Growth in 2Q11, 2011. URL: http:
//www.idc.com/getdoc.jsp?containerId=prUK23024911.

[Inv12] InvenSense Inc. MPU-9150 Nine Degrees of freedom inertial measurement
unit, 2012.

[ITU94] ITU Radiocommunication Assembly. Recommendation ITU-R BT.601-4 — En-
coding parameters of digital television for studios, 1994.

[JL03] Eric Jacobsen and Richard Lyons. The Sliding DFT. IEEE Signal Processing
Magazine, (March), 2003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-
nealing. Science, 220:671–680, 1983. doi:10.1126/science.220.4598.
671.

[Kho11] K Khoshelham. Accuracy Analysis of Kinect depth data. ISPRS Workshop Laser
Scanning, 2011.

[KJvdK98] B Kemp, a J Janssen, and B van der Kamp. Body position can be monitored in
3D using miniature accelerometers and earth-magnetic field sensors. Electroen-
cephalography and clinical neurophysiology, 109(6):484–8, December 1998. URL:
http://www.ncbi.nlm.nih.gov/pubmed/10030679.

[KL07] Kai Kunze and Paul Lukowicz. Using acceleration signatures from ev-
eryday activities for on-body device location. 2007 11th IEEE International
Symposium on Wearable Computers, pages 1–2, October 2007. URL: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4373794,
doi:10.1109/ISWC.2007.4373794.

[Kle07] D. G. Kleinbaum. Applied Regression Analysis and Other Multivariable Methods.
Brooks/Cole, 2007.

[KLPB09] Kai Kunze, Paul Lukowicz, Kurt Partridge, and Bo Begole. Which Way Am I
Facing: Inferring Horizontal Device Orientation from an Accelerometer Signal.
2009 International Symposium on Wearable Computers, pages 149–150, September

87

http://dx.doi.org/10.2307/2369245
http://dx.doi.org/10.1049/cp:20051557
http://www.idc.com/getdoc.jsp?containerId=prUK23024911
http://www.idc.com/getdoc.jsp?containerId=prUK23024911
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/10030679
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4373794
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4373794
http://dx.doi.org/10.1109/ISWC.2007.4373794

Bibliography

2009. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5254664, doi:10.1109/ISWC.2009.33.

[Lar08] Pia Veldt Larsen. Regression and analysis of variance — Residual analysis,
2008.

[Lee12] Peter M. Lee. Theory of the correlation coefficient. In Bayesian Statistics: An
Introduction, pages 182–183. John Wiley and Sons, 4th edition, 2012.

[Leh09] Alexander Lehmann. Towards Mobile Location- and Orientation-Based Detection
of Social Situations. Diploma thesis, 2009.

[MG11] J. J. Macionis and L.M. Gerber. Sociology 7th Edition. Toronto: Pearson Prentice
Hall, 2011.

[Mic10] Microsoft Corp. PrimeSense Supplies 3-D-Sensing Technology to ‘Project Na-
tal’ for Xbox 360, 2010. URL: http://www.microsoft.com/en-us/news/
press/2010/mar10/03-31PrimeSensePR.aspx.

[Mic11a] Microsoft Corp. Microsoft Releases Kinect for Windows SDK Beta for Aca-
demics and Enthusiasts, 2011. URL: http://www.microsoft.com/en-us/
news/press/2011/jun11/06-16MSKinectSDKPR.aspx.

[Mic11b] Microsoft Corp. Natural User Interface — Skeletal Tracking, 2011. URL: http:
//msdn.microsoft.com/en-us/library/hh973074.

[Mic11c] Microsoft Corp. Using the Combined Motion API for Windows Phone, 2011.
URL: http://msdn.microsoft.com/library/hh202984.aspx.

[MR09] Gerard Pons Moll and Bodo Rosenhahn. Ball joints for Marker-less human
Motion Capture. 2009 Workshop on Applications of Computer Vision (WACV),
pages 1–8, December 2009. doi:10.1109/WACV.2009.5403056.

[MSSD06] U. Maurer, A. Smailagic, D.P. Siewiorek, and M. Deisher. Activity Recognition
and Monitoring Using Multiple Sensors on Different Body Positions. Inter-
national Workshop on Wearable and Implantable Body Sensor Networks (BSN’06),
pages 113–116, 2006. URL: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1612909, doi:10.1109/BSN.2006.6.

[Nas05] Steven Nasiri. A Critical Review of MEMS Gyroscopes Technology and Com-
mercialization Status. 2005.

[NBW06] M. Newman, A.-L. Barabasi, and D. J. Watts. The Structure and Dynamics of
Networks. Princeton University Press, 2006.

[Nis96] Kazuhito Nishida. United States Patent 5,497,196 — Video camera having an
adaptive automatic iris control circuit, 1996. URL: http://patft1.uspto.
gov/netacgi/nph-Parser?patentnumber=5497196.

[NSY] Ben Nham, Kanya Siangliulue, and Serena Yeung. Predicting Mode of Trans-
port from iPhone Accelerometer Data.

88

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5254664
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5254664
http://dx.doi.org/10.1109/ISWC.2009.33
http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx
http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx
http://www.microsoft.com/en-us/news/press/2011/jun11/06-16MSKinectSDKPR.aspx
http://www.microsoft.com/en-us/news/press/2011/jun11/06-16MSKinectSDKPR.aspx
http://msdn.microsoft.com/en-us/library/hh973074
http://msdn.microsoft.com/en-us/library/hh973074
http://msdn.microsoft.com/library/hh202984.aspx
http://dx.doi.org/10.1109/WACV.2009.5403056
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612909
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612909
http://dx.doi.org/10.1109/BSN.2006.6
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=5497196
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=5497196

Bibliography

[Nyq28] Harry Nyquist. Certain topics in telegraph transmission theory. Trans.
AIEE, 47:617–644, 1928. URL: http://replay.web.archive.org/

20060706192816/http://www.loe.ee.upatras.gr/Comes/Notes/

Nyquist.pdf.

[OSB99] Alan V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal processing.
Prentice Hall, Upper Saddle River, N.J., 1999.

[Pen09] Alex Pentland. Reality Mining of Mobile Communications: Toward a New
Deal on Data. In Technology Report 2008 — 2009 Mobility in a Networked World,
pages 75–80. 2009.

[Pla50] R. L. Plackett. Some Theorems in Least Squares. In Biometrika, pages 149–157.
1950.

[PLGR12] Gerard PonsMoll, Laura LealTaix, Juergen Gall, and Bodo Rosenhahn. Data-
driven Manifolds for Outdoor Motion Capture. Theoretic Foundations of Com-
puter Vision: Outdoor and Large-Scale Real-World Scene Analysis, pages 1–25, 2012.

[Por11] Mike Porteous. Introduction to Digital Resampling. 2011.

[RDML] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L Littman.
Activity Recognition from Accelerometer Data. Energy, pages 1541–1546.

[RM00] P. Read and M.P. Meyer. Film Projection — Frame rates. In Restoration of Motion
Picture Film, pages 24–26. Butterworth-Heinemann, 2000.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence — A Modern Approach,
volume 23. Alan Apt, 3rd edition, June 2010.

[Ros07] S. M. Ross. Section 2.6. — Moment Generating Functions. In Introduction to
Probability Models, page 70. Academic Press, 2007. doi:9780125980623.

[RWY+09] Dahai Ren, Lingqi Wu, Meizhi Yan, Mingyang Cui, Zheng You, and Muzhi
Hu. Design and Analyses of a MEMS Based Resonant Magnetometer. Sensors,
9(9):6951–6966, September 2009. URL: http://www.mdpi.com/1424-8220/9/
9/6951/, doi:10.3390/s90906951.

[SCCD] J. Solà i Carós, O. Chételat, P. Celka, and S. Dasen. Very Low Complexity
Algorithm for Ambulatory Activity Classification. Statistics.

[SFC+] Jamie Shotton, Andrew Fritzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipman, and Andrew Blake. Real-Time Human Pose
Recognition in Parts from Single Depth Images.

[Sha49] Claude E. Shannon. Communication in the presence of noise. Proc. Institute of
Radio Engineers, 37(1):10–21, 1949. URL: http://www.stanford.edu/class/
ee104/shannonpaper.pdf.

[SL11] A. A. Salah and B. Lepri. Human Behavior Understanding for Inducing Behav-
ioral Change: Application Perspectives. In Proceedings of the second International
Workshop for Human Behavior Understanding, Amsterdam, pages 5–9, 2011.

89

http://replay.web.archive.org/20060706192816/http://www.loe.ee.upatras.gr/Comes/Notes/Nyquist.pdf
http://replay.web.archive.org/20060706192816/http://www.loe.ee.upatras.gr/Comes/Notes/Nyquist.pdf
http://replay.web.archive.org/20060706192816/http://www.loe.ee.upatras.gr/Comes/Notes/Nyquist.pdf
http://dx.doi.org/9780125980623
http://www.mdpi.com/1424-8220/9/9/6951/
http://www.mdpi.com/1424-8220/9/9/6951/
http://dx.doi.org/10.3390/s90906951
http://www.stanford.edu/class/ee104/shannonpaper.pdf
http://www.stanford.edu/class/ee104/shannonpaper.pdf

Bibliography

[SMN11] Loren Schwarz, Diana Mateus, and Nassir Navab. Recognizing Multiple Hu-
man Activities and Tracking Full-Body Pose in Unconstrained Environments.
Pattern Recognition, 2011.

[Sny05] Jan A. Snyman. Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory and Classical and New Gradient-Based Algorithms. Springer,
2005.

[Spr88] T. Springer. Sliding FFT computes frequency spectra in real time. EDN Maga-
zine, pages 161–170, 1988.

[ST60] R. G. D. Steel and J. H. Torrie. Principles and Procedures of Statistics. McGraw-
Hill, New York, 1960.

[STM08] STMicroelectronics. MEMS motion sensor: 3-axis smart digital output ‘nano’
accelerometer LIS331DL — Datasheet. (April), 2008.

[STM11] STMicroelectronics. First generation digital compass — LSM303DLH. 2011.

[STM12] STMicroelectronics. MEMS motion sensor: 3 axis analog output gyroscope
A3G4250D — Datasheet. (February), 2012.

[The61] Henri Theil. Economic Forecasts and Policy. North, Amsterdam, Holland, 1961.

[TLH11] M J Thompson, M Li, and D A Horsley. Low power 3-axis lorentz force navi-
gation magnetometer. Response, (3):593–596, 2011.

[VCY05] Michail Vlachos, Vittorio Castelli, and Philip Yu. On Periodicity Detection and
Structural Periodic Similarity. In Proceedings of the Fifth SIAM International Con-
ference on Data Mining, pages 449–460, Hawthorne, NY, 2005. IBM T.J. Watson
Research Center.

[VM04] Michail Vlachos and Chris Meek. Identifying Similarities , Periodicities and
Bursts for Online Search Queries. Power, 2004.

[VSP09] A Vinciarelli, H Salamin, and M Pantic. Social Signal Processing: Understand-
ing Social Interactions through Nonverbal Behavior Analysis. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, Miami, FL,
2009. doi:10.1109/CVPRW.2009.5204290.

[WF02] Greg Welch and Eric Foxlin. Motion Tracking : No Silver Bullet, but a Re-
spectable Arsenal. Ieee Computer Graphics And Applications, (December), 2002.

[ZA07] Wiebren Zijlstra and Kamiar Aminian. Mobility assessment in older peo-
ple: new possibilities and challenges. European Journal of Ageing, 4(1):3–
12, February 2007. URL: http://www.springerlink.com/index/10.1007/
s10433-007-0041-9, doi:10.1007/s10433-007-0041-9.

90

http://dx.doi.org/10.1109/CVPRW.2009.5204290
http://www.springerlink.com/index/10.1007/s10433-007-0041-9
http://www.springerlink.com/index/10.1007/s10433-007-0041-9
http://dx.doi.org/10.1007/s10433-007-0041-9

	Acknowledgements
	Abstract
	Introduction
	1 Concept
	1.1 Social Networks
	1.1.1 Social Networking Platforms
	1.1.2 Mobile Social Networking
	1.1.3 Smartphones as Social Sensors
	1.1.4 Inference on Social Situations

	1.2 Motion capturing
	1.3 Approach of this work
	1.3.1 Goals
	1.3.2 Assumptions
	1.3.3 Further considerations

	2 Mobile Device Sensors
	2.1 Accelerometer
	2.2 Magnetometer
	2.3 Gyroscope
	2.4 Sensor fusion

	3 Supervision Sensor
	3.1 Depth imaging
	3.2 Depth sensing constraints
	3.3 Frameworks

	4 Machine Learning
	4.1 Algorithm selection
	4.2 Linear regression
	4.2.1 Hypothesis space
	4.2.2 Errors and Loss
	4.2.3 Model fitting

	5 Preprocessing and Reconstruction
	5.1 Multiplexing
	5.1.1 Delay correction
	5.1.2 Frequency harmonisation
	5.1.3 Packaging

	5.2 Heading calculation
	5.2.1 Characteristic vectors
	5.2.2 Reduction to single angle
	5.2.3 Further refinement
	5.2.4 Discussion and analysis

	5.3 Regression feature extraction
	5.3.1 Elementary features
	5.3.2 Statistical features
	5.3.3 Periodicity features

	5.4 Response feature extraction
	5.4.1 Revolute joint model
	5.4.2 Relevant features
	5.4.3 Skeleton estimation from features

	6 Wearing position
	6.1 Wearing preferences
	6.2 Classification
	6.2.1 Camera luminance
	6.2.2 Acoustic patterns
	6.2.3 Attitude heuristics

	6.3 Model selection

	7 Evaluation
	7.1 Implementation
	7.2 Model analysis
	7.2.1 Residual metrics
	7.2.2 Residual analysis
	7.2.3 Feature selection
	7.2.4 Final models
	7.2.5 Cross-validation

	7.3 Results
	7.3.1 Prediction precision
	7.3.2 Probability density of
	7.3.3 Generalisation

	Conclusion
	Appendix
	Bibliography

